Study of defect structure of ordered REVO₄ and disordered $Ca_9RE(VO_4)_7$ and $Ca_3RE_2(BO_3)_4$ (RE = rare earth metal cation) single crystals

A. Sulich ^{1,*}, J.Z. Domagala ¹, Alexey Shekhovtsov ², Marek Berkowski ¹, and W. Paszkowicz ¹

¹ Institute of Physics PAS, AI. Lotników 32/46, PL-02-668 Warsaw, Poland
 ² Institute for Single Crystals, NASU, Nauki Ave. 60, 61001 Kharkov, Ukraine
 *Corresponding author, e-mail: sulich@ifpan.edu.pl

The investigated with a high-resolution X-ray diffractometry ($\lambda = 1.5406$ Å) single crystals represent high-symmetrical crystallographic systems, respectively: rhombohedral, tetragonal and orthorhombic. They had been selected, because they are promising materials, dedicated especially for optoelectronics [1-3], and there were not many studies devoted to their lattice defects.

- The plots β -< β > vs X illustrate a diversification of ω-scan FWHM values along selected direction of the crystal surface; the series of measurements were done with an analyzer and provide an information about a spatial distribution of a micromosaics in a single-crystal
- □ <FWHM_{RC}> is average value of FWHM of ω-scans done with opened detector and provide an information about general crystallographic quality of the crystals: for REVO₄ it is 64.6"÷96.7" (for similar crystals known from literature: 10"÷169"), for Ca₉RE(VO₄)₇ 56.8"÷76.9" (for similar crystals in literature: 76"÷158") and for Ca₃RE₂(BO₃)₄ 30.2"÷144.0" (for similar crystals in literature: 23"÷340").
- □ The plots *c*-<*c*> (or *a*-<*a*>) vs *X* illustrate a spatial distribution of a lattice parameter values along selected direction of the crystal surface
- □ The reciprocal lattice point maps provide, among others, an information about a presence and number crystal blocks in the illuminated area

Summary

The results of an assessment of general crystallographic quality of investigated samples, based on FWHM magnitude, are comparable with the literature data for the same or similar materials

Q_x [1/A]

- □ The crystals have different quality; there are detected three main types of defects in them: micromosaics (in all samples), crystal blocks (in REVO₄ and $Ca_3RE_2(BO_3)_4$) and inhomogeneity of chemical composition (in REVO₄)
- Studied single-crystals have complex crystallographic planes profiles with small bending of various coverage and signs (the most perfect profile is in Ca₃RE₂(BO₃)₄)

[5] G. Leniec, S.M. Kaczmarek, M. Berkowski, M. Głowacki, T. Skibiński, B. Bojanowski, *Growth and EPR properties of ErVO4 single crystals*, Nukleonika 60(3) (2015) 405-410. [6] B.I. Lazoryak, D.V. Deyneko, S.M. Aksenov, V.V. Grebenev, S.Yu. Stefanovich, K.N. Belikov, M.B. Kosmyna, A.N. Shekhovtsov, A. Sulich, W. Paszkowicz, *Influence of lithium and magnesium on the real structure and dielectric properties of Ca*₉Y(VO₄)₇ single crystals, CrystEngComm 20 (2018) 6310. [7] M.B. Kosmyna, B.P. Nazarenko, V.M. Puzikov, A.N. Shekhovtsov, W. Paszkowicz, A. Behrooz, P. Romanowski, A.S. Yasukevich, N.V. Kuleshov, M.P. Demesh, W. Wierzchowski, K. Wieteska, C. Paulmann, Ca₁₀Li(VO₄)₇:Nd³⁺, a promising laser material: growth, structure and spectral characteristics of a Czochralski-grown single crystal, Journal of Crystal Growth 445 (2016) 101-107. [8] M. Sukumar, R. Ramesh Babu, K. Ramamurthi, G. Bhagavannarayana, Structural and optical properties of LiKB₄O₇ single crystals grown by Czochralski technique, Materials Chemistry and Physics 160 (2015) 369-374. [9] R.A. Kumar, M. Arivanandhan, Y. Hayakawa, Recent advances in rare earth-based borate single crystals: Potential materials for nonlinear optical and laser applications, Progress in Crystal Growth and Characterization of Materials, 59 (2013) 113-132.

^[1] G.M. Kuz'micheva, E.A. Tyunina, E.N. Domoroshchina, V.B. Rybakov, A.B. Dubovskii, X-ray diffraction study of La₃Ga_{5.5}Ta_{0.5}O₁₄ and La₃Ga_{5.5}Nb_{0.5}O₁₄ langasite-type single crystals, Inorg. Mater. 41 (2005) 412-419.

^[2] T.N. Khamaganova, Structural specific features and properties of alkaline-earth and rare-earth metal borates, Russ. Chem. Bull. 66 (2017) 187-200.

^[3] F. Yu, X. Duan, S. Zhang, Q. Lu, X. Zhao, Rare-earth calcium oxyborate piezoelectric crystals ReCa₄O(BO₃)₃: growth and piezoelectric characterizations, Crystals 4 (2014) 241-261.[4] Radiation Physics and Chemistry 93 (2013) 174-183.

^[4] Domagala2013, J.Z. Domagala, W. Paszkowicz, J. Bak-Misiuk, O.N. Ermakova, H. Dabkowska, One-dimensional defect distribution along needle-shaped PrVO₄ single crystals grown by the slow-cooling method, Radiation Physics and Chemistry 93 (2013) 174-183.