CONTINOUOS OBSERVATION OF A

National Science Centre poland

1. THE MCWF-METHOD

In quantum mechanics, a large class of dissipative processes can be described by the master equation

$$
\dot{\rho_{S}}=\frac{i}{\hbar}\left[\rho_{S}, H_{S}\right]+\mathcal{L}_{\text {relax }}
$$

Where ρ_{S} is the density matrix and H_{s} the Hamiltonian of the system. For Markovian processes, the most general form of the relaxation operator in this equation is

$$
\mathcal{L}_{\text {relax }}=-\frac{1}{2} \sum_{m}\left(C_{m}^{\dagger} C_{m} \rho_{S}+\rho_{S} C_{m}^{\dagger} C_{m}\right)+\sum_{m} C_{m} \rho_{S} C_{m}^{\dagger}
$$

The C_{m} are operators which for instance can describe the coupling of the system to a reservoir. Instead of solving the master equation, we pursue an alternative approach due to Castin, Dalibard and Molmer ${ }^{1}$. In this formalism, one obtains single possible trajectories which are given by randomly ocurring „quantum jumps" and evolution with a nonhermitian Hamiltonian inbetween.

This Hamiltonian is given by

$$
H=H_{S}-\frac{i \hbar}{2} \sum_{m} C_{m}^{\dagger} C_{m}
$$

After a small time step δt the wavefunction is no longer normalized, its norm given by $1-\delta p$, with

$$
\delta p=\sum_{m} \delta p_{m} \quad \text { and } \quad \delta p_{m}=\delta t\langle\phi(t)| C_{m}^{\dagger} C_{m}|\phi(t)\rangle
$$

These δp_{m} are the probabilities of the respective quantum jumps. To obtain the wavefunction after a timestep, we first randomly choose whether a jump occurs. If so, the new wavefunction is given by

$$
|\phi(t+\delta t)\rangle=\frac{C_{m}|\phi(t)\rangle}{\| C_{m}|\phi(t)\rangle \|}
$$

If not, we just evolve using our Hamiltonian and normalize:
$|\phi(t+\delta t)\rangle=\frac{\left|\phi^{(1)}(t+\delta t)\right\rangle}{\|\left|\phi^{(1)}(t+\delta t)\right\rangle \|} \quad\left|\phi^{(1)}(t+\delta t)\right\rangle=\left(1-\frac{i H \delta t}{\hbar}\right)|\phi(t)\rangle$

2. OUR MODEL

We want to study the behaviour of a system under continuous measurement. In the simplest case, this might be a single particle:

$$
H_{S}=\frac{p^{2}}{2 m}+V
$$

The particle is thought to evolve in the 2D plane on a grid of detectors which can measure both position and momentum. In the formalism described above, this means that the C_{m} are projection operators on localized states with a defined momentum, e.g. Gaussian wavepackets. Each C_{m} corresponds to a detector, and each grid point accommodates a number of detectors for states with identical position but different momentum.

Right: Trajectory of a particle in a harmonic oscillator with some initial momentum. Red dots signify detectors in which the particle was measured and are connected for improved readability.

Bottom: Evolution of the probability density for a free particle at rest, without performing quantum jumps. The figures show the density at five equidistant time steps.

3. OUTLOOK

The model allows for a number of extensions. For instance, alternate forms of the C_{m} operators allow for treatment of tunneling between detectors due to nonzero overlap of their eigenfunctions, as well as simulation of multi-particle systems.
Substituting the simple detectors with two-level systems would allow for a model of a weakly-measured particle: For sufficient overlap with the particle, the detector would be excited into a higher state, relaxation back to the ground state giving the "detection signal" without destroying the total wavefunction.

This work is supported by the (Polish) National Science Center Grant No. 2017/25/B/ST2/01943.

References:
[1] Klaus MøImer, Yvan Castin, and Jean Dalibard, Monte Carlo wave-function method in quantum optics, J. Opt. Soc. Am. B 12, 4, pp. 524-538, 1993

