

PAULI CRYSTALS

Mariusz Gajda, Filip Gampel, Jan Mostowski, Tomasz Sowiński, Magdalena Załuska-Kotur

Institute of Physics, Polish Academy of Sciences

Pauli Crystals are groups of spin-polarized fermionic atoms in a trap. The atoms do not interact, but due to Fermi statistics, there are correlations between their positions. Simultaneously measuring these positions reveals the correlations and **unexpected geometric structures** arise solely from the Pauli exclusion principle.

OVERVIEW

Consider a group of fermionic atoms (e.g. Li-6) with polarized spin in a harmonic trap. The atoms are at low temperature – all atomic movement in the trap is frozen, and the atoms are in the harmonic oscillator ground state.

The atoms **do not interact**, but due to Fermi statistics, there are correlations between their positions: predicted in 2016 [1] and observed in 2020 [2].

One particle wavefunction: $\phi_i(x_k)$

Many-body wavefunction:
$$\Psi(x_1, ..., x_N) = \frac{1}{\sqrt{N!}} \text{Det}\{\phi_j(x_i)\}$$

Atomic positions are random, and their distribution – the square modulus of the many-body wavefunction – is a function of N_d variables (N = atom number, d = number of dimensions). This is tough to visualize and study.

One particle density function: The probability density of finding an atom at position x without taking into account the positions of the remaining atoms.

TAKING CORRELATIONS INTO ACCOUNT

Let us first assume three atoms in a two-dimensional trap (N=3, d=2). The atoms are in the ground state – one atom in the lowest energetic level, two in the first excited level, one in x, the other in y-direction.

The one particle density function can be seen in Fig. 1, upper left. The most probable configuration according to the many-body distribution is marked with black dots. The maxima form an equilateral triangle.

Figure 3: Pauli Crystals in three dimensions. *The upper row* shows N=4, 9 and 16 free particles located on a sphere (red vertices, connected by edges for improved readability). Note that unlike in the other cases, the particles do not form geometrically seperate shells. **The lower row** shows N=10, 20 and 35 particles in a three-dimensional harmonic trap. The particles form spatial shells, visualised by spheres of different sizes.

ONAL SCIENCE CENTRE

We expect that most of the time, the particles will be found close to the maxima of the many-body distribution. Using a Monte Carlo method, we compute an ensemble of atomic configurations, simulating a series of real measurements. The positions form a triangle, usually similar to an equilateral one, but each time rotated by a random angle.

To compare and quantify them, we develop a method of recognizing patterns and re-aligning the individual outcomes.

Other cases corresponding to closed energy shells are N=6, N=10, N=15 (see Fig. 1). Pauli crystals for N=10 and N=15 have a different geometry then crystals built by interacting (repulsive) particles in a trap, for instance ions.

The Pauli exclusion principle may not be treated as a form of particle interaction.

In the case of **open shells** there is degeneracy – there are different shapes of Pauli crystals corresponding to equal energies. Fig. 2 shows such Pauli crystals for N=4 and 5, d=2.

> This work is supported by the (Polish) National Science Center Grant No. 2017/25/B/ST2/01943.

References:

[1] Mariusz Gajda, Jan Mostowski, Tomasz Sowiński, Magdalena Załuska-Kotur, Single-shot imaging of trapped Fermi gas, EPL 115, 20012, 2016

[2] Marin Holten, Luca Bayha, Keerthan Subramanian, Carl Heintze, Philipp M

Preiss, Selim Jochim, Observation of Pauli Crystals, PRL 126, 020401, 2021