Optical properties and electronic structure of $RAIO_3$ (R = La, Gd, Y, Yb, Lu) perovskites

Ya. Zhydachevskyy^{1,2,#}, Yu. Hizhnyi^{3,&}, S.G. Nedilko³, M. Głowacki¹, M. Berkowski¹, A. Suchocki¹

¹ Institute of Physics, Polish Academy of Sciences, Warsaw, Poland; [#] <u>zhydach@ifpan.edu.pl</u> ³ Taras Shevchenko National University of Kyiv, Ukraine; [&] <u>hizhnyi@univ.kiev.ua</u>

Motivation and Summary

Yttrium-aluminum perovskite (YAIO₃ or YAP) is well-known host material for solid-state lasers, scintillators and various kinds of converting and storage phosphors. YAP crystal possesses deformed perovskite-like structure with orthorhombic symmetry (space group $D_{2h}^{16} - Pbnm$). Other rare-earth-based aluminates and their solid solutions with the same type of structure (e.g. LuAIO₃, GdAIO₃, YbAIO₃ etc.) are also well known. A great amount of optical and luminescent properties of these crystals is determined not only by the specific doping creating energy levels inside the band gap of the material, but also by presence of native and uncontrolled impurity defects, their ionization energy and location generated by them trapping levels in band gap. Therefore the width of the forbidden band gap is very important.

The present work is devoted to systematic study of the electronic band gap widths of RAIO₃ perovskites with various RE cations (*R* = La, Gd, Y, Yb, Lu). Both experimental and theoretical methods are applied to determine dependence of the band gap width on type of the RE cation. The DFT-based theoretical calculations with use of the Plane-Wave Pseudopotential method [1] were carried out in order to establish the electronic band structures of RAIO₃ crystals. Results obtained from the calculations for the studied materials are compared with corresponding experimental results for optical absorption in the VUV-UV range.

Fig. 1. Room-temperature optical absorption spectra of some *R*AlO₃ perovskites.

Compound	E _g , eV	
LuAlO ₃	≥8.0	Table 1. Band gaps of RAIO ₃ perovskites estimated from the absorption measurements
YAIO ₃	7.6	
GdAlO ₃	6.7	
LaAlO ₃	5.6]
YbAlO ₃	4.9]

Fig. 2. Calculated partial densities of states of $RM^{III}O_3$ perovskites (R = Y, La, Lu, Gd, Yb; $M^{III} = AI$, Ga, In).

Compound	Structure type,	V _{xc}	E _g , eV	Notes
	symmetry group			
YAIO ₃	orthorhombic, PBNM	GGA-PBE	4.86	
		GGA-RPBE	4.89	
		GGA-PW91	4.87	
		GGA-WC	4.84	
		GGA-PBESOL	4.85	
		HF-LDA	15.07	
		sX-LDA	6.85	
		PBE0	7.22	
		B3LYP	7.08	
		HSE03	6.51	
		HSE06	6.43	
LaAlO ₃	orthorhombic, PBNM	GGA-PBE	3.35	
LaAIO ₃	trigonal,	GGA-PBE	3.42	
	R-3C	PBEO	5.21	
		HSE03	4.82	
		B3LYP	5.38	
LuAlO ₃	orthorhombic, PBNM	GGA-PBE	5.49	
		PBEO	7.85	
		HSE03	7.08	
		B3LYP	7.51	
GdAlO ₃	orthorhombic, PBNM	GGA-PBE	5.08	Hubbard U = 6.0 eV for Gd f
YbAlO ₃	orthorhombic, PBNM	GGA-PBE	5.66	Hubbard U = 20.0 eV for Yb f
YGaO ₃	hexagonal, P 63 C M	GGA-PBE	2.77	
		PBEO	4.93	
		B3LYP	4.58	7
YInO₂	orthorhombic. PBNM	GGA-PBE	2.09	

Fig. 3. Band gap values of $RM^{III}O_3$ perovskites (R = Y, La, Lu, Gd, Yb; M^{III} = Al, Ga, In) calculated with GGA-PBE [2] exchange-correlation functional.

References:

M. C. Payne, M. P. Teter, D. C. Allan, et al. // Rev. Mod. Phys. 64 (1992) 1045-1097.
J. P. Perdew, K. Burke, M. Ernzerhof // Phys. Rev. Lett. 77, 3865–3868 (1996).

Conclusions

- Experiments on the optical absorption spectroscopy allowed to estimate the band gap energies E_g^{exp} of RAIO₃ (R = Y, La, Lu, Gd, Yb) perovskites.
- Use of PBE0 exchange-correlation functional gives calculated band gaps E_g^{calc} of RAIO₃ close to their experimental estimations E_g^{exp} for R = Y, La and Lu.
- The difference in E_{g}^{exp} between YAIO₃ and LaAIO₃ (2 eV) is well reproduced in calculations with PBEO (2.01 eV), however for GGA-PBE this difference is underestimated (1.44 eV).
- ♦ GGA-PBE gives the same difference in Eg calc for (YAIO₃ vs LuAIO₃) and (YAIO₃ vs YGaO₃) cases as PBEO.
- Use of GGA-PBE in case of RAIO₃ (R = Y, La, Lu) perovskites is justified since it satisfactory reproduces the tendencies in E_e^{exp} .

Acknowledgements: The work was supported by the Polish National Science Centre (project no. 2018/31/B/ST8/00774) and by the NATO SPS Project G5647. The authors are indebted to Dr. Irina Kudrjavtseva from University of Tartu for the VUV-UV absorption measurements.

Table 2. Calculated band gaps of $RM^{III}O_3$ (R = Y, La, Lu, Gd, Yb; M^{III} = Al, Ga, In) perovskites.