Deep defect levels in high-resistivity CdMnTe crystals

<u>Aneta Wardak*, Michał Szot, Gabriela Janusz, Dominika Kochanowska, Marta Witkowska-Baran</u> and Andrzej Mycielski

Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland

*Author to whom any correspondence should be addressed: wardak@ifpan.edu.pl

Introduction

- CdMnTe belongs to the group of semiconductors, which is currently studied for room-temperature lacksquarenuclear detectors.
- In this application a high resistivity value >10⁹ Ω cm is necessary. lacksquare
- Photoluminescence (PL) spectroscopy is a common method of analyzing the defect structure in lacksquaresemiconductors.
- Studies on defect structure in detector-grade CdMnTe are crucial because deep level defects within ulletthe material disturb the transport of photo-carriers by acting as recombination- or trapping-centers. The origin of many defects is still unknown. lacksquare

PL spectra at 5 K in 0.4-1.4 eV range

The origin of 1.1 eV PL peak

This PL peak is related to Te secondary phases.

Microstructure images of investigated crystals made by transmission infra-red microscopy.

The origin of 0.55 eV PL peak

- Deionization of a deep acceptor, like Cd^{2–} $h^+ + Cd^{2-} \rightarrow Cd^-$
- The presence of such deep acceptor is more likely after annealing in Te atmosphere.
- > OR recombination center linking two transitions: the electron one with 1.1 eV energy radiation and the hole one with 0.55 eV energy radiation.
- \geq 1.1 eV + 0.55 eV = 1.65 eV = E_g (5 K) for Cd_{0.95}Mn_{0.05}Te

The origin of 0.8 eV PL peak

The presence of a deep donor Te_{Cd}^{2+} ensures high resistivity in CdMnTe crystal.

	Excess /per 100 g	Treatment	Resistivity [Ωcm]
1	+ 28 mg Te	as-grown	2.0×10 ⁶
2		ann in Cd	2.5×10^{6}
3		ann in Te then in Cd	2.5×10 ⁶
4	+ 10 mg Cd	as-grown	2.0×10^{6}
5		ann in Te	2.0×10 ⁸

Summary

- The **0.8 eV PL band** is connected with Te antisite Te_{Cd}²⁺. This deep donor can pin the Fermi level in the midgap, ensuring high resistivity values of CdMnTe crystals.
- The origin of the **0.55 eV PL band** may be related to the deionization of a deep acceptor, such as Cd^{2–}, or with the recombination of an electron (1.1 eV) and a hole (0.55 eV) at the recombination center.
- The **1.1 eV luminescence** is associated with defects induced by Te secondary phases, which is confirmed by IR microscopy images of the crystals' microstructure.

Acknowledgments

This work was partially funded by the National Centre for Research and Development, Poland through grant No. TECHMATSTRATEG1/346720/8/NCBR/2017.

The National Centre for Research and Development