

Magnetic ordering in $Ge_{1-x-y}(Sn_xMn_y)$ Te multiferroics

Lukasz Kilanski^{1,*} Abdul Khaliq¹, Monika Arciszewska¹, Andrzei Avdonin¹, Beata Brodowska¹, Abbas Khan¹, Witold Dobrowolski¹, Vasya E. Slynko², Evgen I. Slynko²,

¹Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.

² Institute of Materials Science Problems, Ukrainian Academy of Sciences, Chernovtsy, Ukraine.

Correspondence to: abdul.khaliq@ifpan.edu.pl

Abstract

* Incorporation of magnetic ions in group IV-VI ferroelectric-semiconductor lattice offers intriguing materials properties and entanglement between magnetic and spin-orbit orders. * GeTe is proposed to integrate both its intrinsic ferroelectric polarization (broken inversion symmetry) and incorporated magnetic order which yields to Rashba spin splitting. • We have synthesized $Ge_{1-x-y}(Sn_xMn_y)$ Te multiferroics to study its magnetic ordering, ferroelectric polarization and its domain walls dynamics at various temperatures. • Our measured samples show that $Ge_{1-x-y}(Sn_xMn_y)$ Te has cubic (Fm-3m) and rhombohedral (F3m) symmetries at room temperature for different Sn and Mn contents. * The magnetic susceptibility measurements demonstrate the existence of both ferromagnetic and frustrated magnetic ordering at low temperature.

- ions [1].
- High carrier concentration compared to II-VI compounds.
- $T_c = 200 \text{ K for } x = 0.5 [3].$
- Ferroelectric ordering in $Ge_{1-x}TM_xTe$ [1-3].
- Strong RKKY interaction.
- Ferroelectric nature of GeTe offers possibility
- of entanglement between magnetic and spin-orbit

orders, and Rashba spin splitting.

[1] L. Kilanski et al. *Phys. Rev. B* **95**, 035206 (2017). [2] M. Hassan et al. J. Cryst. Growth 323, 363 (2011). [3] Y. Fukuma et al. Appl. Phys. Lett. 93, 252502 (2008).

- magnetic semiconductors to study their ferroelectric and magnetic ordering.
- Various compositions of Ge_{1-x}TM_xTe are being investigated to construct the phase diagram based on ferroelectric transition temperature.
- In this study, our planned work is also focused on the low temperature ferroelectric measurements and

dynamics of domain walls.

Rhombohedrally distorted unit cell of multiferroic $Ge_{1-x}Mn_xTe$ (b) Schematic Rashba-gas band maps of a ferromagnetic semiconductor compared with ferroelectric Rashba semiconductor (FERS) (c) multiferroic Rashba semiconductor (MUFERS) in d, with their dependence on the orientations of the FM (M) and FE (P_e) order (e) Typical out-of-plane FE phase hysteresis measured by piezo-force-micros -copy for (FE) GeTe and preserved in $Ge_{1-x}Mn_xTe$ (f) Out-of-plane FM hysteresis curve of multiferroic Ge_{0.87}Mn_{0.13}Te measured by SQUID [4].

- metal (TM) ions.
- The high solubilities originate from the Te-5p anti-bo nding states which are favorable to acceptor doping [5].
- [5] T. Fukushima et al. J. Phys. Condens. Matter 27, 015501 (2015).
- ✤ Magnetic susceptibility measured from 4.5-300 K.
- The susceptibility graph shows both ferromagnetic

and frustrated magnetic states.

- The susceptibility graphs indicate frustrated magnetic order for 0.2 < x < 0.4 and 0.02 < y < 0.07
- Whereas for 0.5 < x < 0.8 and 0.035 < y < 0.085 range, it exhibits a ferromagnetic ordering

Table. 1

4.8 5.1 5.4 5.7 6.0 6.3 6.6 6.9 T (K)	7.2 7.5 7	7.8		
Frequency dependent su $y = 0.05$.	ısceptibi	lity was	measured for	or $\mathbf{x} = 0.2$
Freezing temp shifts with change in frequency.				
• Calculated Mydosh parameter, $R = 0.017$, indicating spin-gla				
like ordering	Sn (x)	Mn (y)	Θ [K]	C (10 ⁻⁴) [emu.K/§
Using modified Curie-	0.20	0.030	26.6 <u>+</u> 1.2	2.35 ± 0.8
Weiss law fitting, the	0.23	0.050	25.6 <u>+</u> 1.1	3.65 ± 0.8
	0.25	0.060	40.6 <u>±</u> 1.4	10.1 ± 1.5
Curie-Weiss temperature	0.35	0.055	23.6 <u>+</u> 1.7	6.8 <u>+</u> 1.3
Θ and Curie-Weiss	0.40	0.020	17.9 <u>+</u> 1.8	2.54 ± 0.7
	0.40	0.070	19.7 ± 1.9	10.5 <u>+</u> 1.1
constant C values were	0.50	0.035	25.9 <u>±</u> 1.9	2.85 ± 0.2
	0.55	0.065	18.4 ± 1.4	6.45 ± 0.6
calculated, given in the	0.60	0.085	17.8 <u>+</u> 1.2	11.1 ± 1.3
table 1.	0.70	0.045	30.3 <u>+</u> 1.5	3.2 ± 0.2
	0.80	0.075	15.3 ± 1.5	7.7 ± 1.2

- demonstrate a spin-glass like magnetic ordering.