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Abstract

Simulations of hopping resistivity by mean-field methods rely on randomly generated site energies. Thus such effects as the
presence of the Coulomb gap and electron current correlations have been simulated using predominantly Monte Carlo methods.
This paper presents a method of mean-field calculation of hopping resistivity in a wide range of temperatures and electric fields.
This method considers the long-range Coulomb interactions and at least partially accounts for the electron current correlations.
Resulting curves reproduce the Mott law in the form predicted by Efros and Shklovskii and the experimentally observed electric
field dependencies. Based on the results, a decrease of hopping energy is predicted with increasing temperature in the nearest-
neighbor hopping regime. The report analyses the differences between the mean-field and the Monte Carlo approaches.

1. Introduction

The simulation of electron transport in the hopping regime
remains a challenging task. In this regime, charge carriers prop-
agate in a solid by phonon-assisted tunneling through a random
network of localized sites. Such propagation is probabilistic
in the sense that carriers can, in principle, jump to any of the
surrounding sites. The probability of each jump depends ex-
ponentially on the distance between sites and on the energy
barrier between them. The analysis of all possible propagation
paths in the presence of broad distributions of jump distances
and jump barriers is a formidable task itself, even for relatively
small cells.

The problem is also difficult because the carriers interact with
each other and with ions via strong, long-range Coulomb inter-
actions. Because of this, the energies of a large number of states
change significantly after each jump. This requires frequent re-
calculation of site energies during the simulation.

Another complication is that each site can hold only a single
electron (if the upper Hubbard band is not considered). This
imposes additional restrictions on the possible jumps and re-
sults in correlations (called Hubbard current correlations) in the
positions of individual carriers, which ought to be taken into
account.

Because of the complexity of the problem there is a variety
of approaches to the simulation of hopping conductivity, which
differ by calculation methods and by amount of approximations
employed. The most popular simulation methods of hopping
conductance are Monte Carlo (MC) simulation and solution of
balance equations (BE) methods. The latter is usually referred
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to as the master equation method. Each method has its advan-
tages and disadvantages.

The MC simulation methods are the closest to simulating all
of the above phenomena. In this sense, they are considered to
be the most exact and are often used to test theories and other
models. One disadvantage of MC methods is due to the “soft”
pairs and clusters, which attract the attention of the algorithm
without producing a net current. Although there are methods
of restricting the soft pairs, the MC calculations become less
practical at low electric fields and at low temperatures. Another
disadvantage is that the dependencies obtained using the MC
methods are noisy. This is the effect of the random nature of
simulated jumps which, (i) modify the occupation of sites by
discrete amounts and (ii) result in a random set of paths ex-
plored in each simulation.

The BE method is a mean-field method. In this method
some averaged values of occupation are attributed to all impu-
rity sites. The transport is calculated assuming these averaged
values of occupations. The BE method considers all possible
current paths simultaneously. It allows for continuous variation
of occupation and produces smooth curves. It is based on the
solution of sets of equations and can be used at low temper-
atures and low electric field conditions. However, it requires
the appropriately averaged energies of all sites to be provided
by some other method. In all known to me reports, regarding
the resistivity calculation using mean-field approach, some ran-
dom energies uncorrelated with the site positions were assigned
to localized sites. Because the averaged equilibrium values of
occupation are used in mean-field methods, the accounting for
the Hubbard current correlations in the mean-field approach is
an active area of research. If the mentioned correlations are
disregarded the results obtained using the BE approach are in
agreement with the results of MC simulations and are produced
in less time.
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The goal of this work was to simulate differentiable temper-
ature dependencies of resistivity in hopping regime in a wide
temperature range. For this reason, the mean-field approach to
simulations was chosen. The goal was also to use as few sim-
plifications as possible. The presented algorithm accounts for
the long-range Coulomb interaction in the system. It simulates
the Coulomb gap in the density of states at low temperatures
and the filling of the Coulomb gap at higher temperatures. It
takes into account the energy-distance correlations for electron
transitions and partially accounts for the Hubbard current cor-
relations. The simulations were carried out for a 3D system of
point defects randomly distributed in a cell.

Section 2 shows how the site energies and equilibrium occu-
pations were calculated for the balance equation method. Sec-
tion 3 shows how hopping resistivity was calculated. Section 4
shows how the system of balance equations was solved. Sec-
tion 5 summarizes the entire calculation procedure. Section 6
shows samples of calculated dependencies. The final section is
devoted to discussion.

2. Mean-field occupation and site energies

Let us consider a three-dimensional system of Nd donor point
defects randomly distributed inside a cube-shaped cell of size L.
Inside the cell there are also randomly distributed Na compen-
sating acceptor defects Na = bNd, where b is the coefficient of
compensation. The Hamiltonian of the system is

H =
e2

κ
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(1)
Here, e is the electron charge, k = 1/4π��0. The first term
represents Coulomb interaction between ionized acceptors, the
second term represents interaction between ionized donors and
acceptors and the last term represents the interaction between
ionized donors. Ra

mn, Ri,m, ri, j stand for acceptor-acceptor,
acceptor-donor and donor-donor distances, respectively. Vari-
able ni is the occupation of donor site i. In the mean-field ap-
proximation it can have any value in the range [0, 1]. The pur-
pose of this section is to calculate the distribution of ni at any
temperature.

In the following text, length is measured in the units of
average donor-donor distance d0 and energy in the units of
ε0 = e2/κd0. It is suitable to set the origin of the energy axis to

H0 =
1
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i� j

1
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= 0 (2)

Here H0 is the energy of Coulomb interaction of all nuclei of
the system. Then the Hamiltonian is reduced to

H =
�

i

ni

ϕi +
1
2

�

j�i

n j

ri j

 , (3)

and contains only the electron-related parts. Here the second
term represents electron-electron interaction, and ϕi is the en-
ergy of the i-th electron in the field of all nuclei, which depends

on system geometry only.

ϕi =
�

j�i

1
Ri j
−
�

j�i

1
ri j
. (4)

Values of ni are usually calculated using a Monte Carlo ap-
proach. However, it was demonstrated analytically that if one
assigns each site a parameter εi, which is measured in units of
energy,

εi ≡ ϕi +
�

j�i

n j

ri j
, (5)

then ni follows the Fermi-Dirac statistics with respect to εi

ni =
1

1 + exp(β(εi − µ)) . (6)

Here β = 1/kBT , T is temperature, kB is Boltzmann constant,
and µ is Fermi energy. It is a surprising result, since electrons
in the considered system are strongly interacting, no quasi-
particles were introduced, and H �

�
niεi. Energy εi has the

meaning of energy released by adding an external electron into
an empty state i or energy required to remove an electron from
an occupied state i to the infinity, i.e. energy of transfer of an
electron from and to the vacuum level. This result was verified
by Monte Carlo simulations for a 2D system in a limited range
of temperatures.

This result makes it possible to calculate ni and εi relatively
easy using numerical methods. Substitution of Eq. (6) into
Eq. (5) gives a system of equations which can be solved with
respect to εi

εi = ϕi +
�

j�i

1
ri j[1 + exp(β(ε j − µ))] , (7)

and then the occupation of the sites can be calculated from
Eq. (6). To solve this system of equations, the Fermi energy
µ needs to be calculated using the charge neutrality condition�

ni = Nd(1 − b) or
� 1

1 + exp(β(εi − µ)) = Nd(1 − b). (8)

In this work the method of iterations was used to calculate
εi, with iteration scheme given by Eq. (7). Values of εi were
updated at once, such that the new values were used in all
following calculations. The initial approximations of εi were
calculated using Eq. (5) under the assumption that the electron
charge is uniformly distributed among donors, ni = 1 − b. Be-
fore each iteration, µ was calculated from Eq. (8) using bisec-
tion method. The search interval for µ was set between −10
and 10. Cyclic boundary conditions along x, y and z axes
were assumed in the calculation of ri j and Ri j using formula

r =
�
Δx2 + Δy2 + Δz2

�1/2
, where

Δx = min(|x j − xi|, L − |x j − xi|). (9)

Values of Δy and Δz were calculated in a similar manner.
The described procedure robustly converges. The obtained

site energies εi were used to calculate the energy distribution of
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the DOS. Figure 1 shows such distributions for three tempera-
tures kBT = 0.1, 0.5 and 2. The compensation coefficient was
set to b = 0.5. The distributions were obtained by combining
noisy distributions of 100 randomly generated cells, each con-
taining 500 donors. To combine the distributions of DOS of
individual cells, they were shifted in energy to a common value
of the Fermi energy, which was set to zero. For each realization
of the cell, DOS was calculated as a histogram with 100 bars in
the range from -5 to 5.

In the DOS calculated for kBT = 0.1 the lower-energy band
corresponds to occupied states ni ≈ 1, and the higher-energy
band corresponds to empty states with ni ≈ 0. The dip in the
DOS in the vicinity of the Fermi energy, called Coulomb gap,
shows that energies εi calculated using mean-field approxima-
tion account for energy-position correlations which stem from
the Coulomb interaction. The DOS at kBT = 0.1 shown in
Fig. 1 closely matches a similar dependence obtained by MC
simulation for T = 0.

Gradual filling of the Coulomb gap occurs at higher tem-
peratures as seen in Fig. 1. The Coulomb gap results from
long-range Coulomb interaction and thus is observable only
at low temperatures when the thermal energy is smaller than
the Coulomb energy. When thermal energy is larger than the
Coulomb energy, the distinction between occupied and unoc-
cupied sites in the vicinity of the gap is gradually removed, as
their occupation numbers tend to 0.5. Thus the distinct bands
which appear at T = 0 in the DOS are expected to widen and to
overlap at high temperatures.

This process was investigated in the literature using mean-
field calculations and by MC method in a model 2D system and
in a random 3D system with charged acceptors. Qualitatively
there is an agreement in the evolution of the distribution of the
DOS with temperature. However, the filling of the Coulomb
gap occurs faster (at lower temperatures) in MC simulation than
in mean-field simulations. This can also be seen if one com-
pares present data from Fig. 1 and data from literature. This
difference remains unexplained and has been attributed origi-
nally to the approximations of the mean-field approach.

One reason for such difference is that in MC approach rela-
tively large amounts of charge (charge of one electron) are be-
ing moved at each jump. This produces large fluctuations in
energy of all sites, and thus mixing of the bands of occupied
and empty states occurs faster. In mean-field approach with the
increasing temperature, the charge is continuously redistributed
among sites, in fractions much smaller than electron charge.
Thus, filling of the coulomb gap occurs slower and at a higher
temperature.

There is also a discrepancy in the literature concerning
the energy-distribution of the occupancy n(ε) calculated using
mean-field and MC approaches. The agreement is good again
only at near-zero temperatures. The n(ε) calculated using the
MC method is steeper than the one calculated using mean-field
approach.

My understanding is that n(ε) calculated by mean-field and
MC approaches should not be compared since they represent
different quantities. In mean-field results, both n and ε are av-
eraged values. In MC results, only n is averaged at equilibrium

over time. The value of ε is not averaged and always repre-
sents the energy of the state at the moment of sampling. For
this reason, in MC approach, a given site (say with index 1)
will contribute to many bars of the distribution histogram since
the energy of the site changes with time. On the other side,
the same site will contribute to just one bar in the mean-field
approach. Thus, in the distribution created using the MC ap-
proach the correlation between the occupation and the index
(position in space) of the site is lost. Since hopping transport is
sensitive to the relative positions of the sites, the result of MC
approach seems to be less practical. This reasoning can be also
applied to the earlier discussed discrepancy of DOS.

Because of how strong the site energy fluctuations are, the
MC and mean-field approaches are not equivalent. In litera-
ture, the MC approach is used as the reference for other meth-
ods. However, the mean-field approach has some advantages,
as shown in the following section and in the discussion.

3. Calculation of resistivity

The flow rate from a site i to another site j can be written as
γi jni(1 − n j). Here γi j is the quantum transition rate from the
occupied site i to empty site j, ni is probability of site i being
occupied, and 1 − n j is probability of site j being empty. The
net flow of charge carriers between sites i and j is then

γi jni(1 − n j) − γ jin j(1 − ni). (10)

The electric current density of the entire cell can be calcu-
lated as

J =
e
�

x=0

�
γi jni(1 − n j) − γ jin j(1 − ni)

�

L2 . (11)

Here the summation is made over pairs i, j, for which hopping
occurs through some given cross-section of the cell (say at x =
0).

In this work, the intensity of the electric field is defined in
terms of the average distance between donors d0 and Coulomb
energy ε0 as follows

eEd0 = αε0, (12)

where α is a dimensionless coefficient, which is usually much
smaller than 1. Since the length and energy have been defined
in units of d0 and ε0, there is E = α/e.

Thus resistivity is

ρ =
E
J
=

αL2

e2�
x=0

�
γi jni(1 − n j) − γ jin j(1 − ni)

� . (13)

In a case when during the hopping event the energy of the ini-
tial state is lower than the energy of the final state, the formula
of phonon-assisted transition rate γi j is known

γi j =
c0xy2

βey(ex − 1)
. (14)
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Figure 1: Distribution of the density of energy states at compensation of b = 0.5 calculated for three temperatures. Energy and temperature are measured in units of
e2/κd0. Density of states is shown in units of Ndkd0/e2. Zero of the ε axis coincides with the Fermi energy at each temperature.

Here x = βΔεi j, y = 2ri j/a, a is localization radius and c0 is
material dependent constant parameter. Since the value of c0 is
arbitrary in this work, it is suitable to set c0e2 = 1.

The backward transition from site j to i, for which Δεi j < 0,
is believed to be spontaneous, and the formula for the rate of
such transitions is not known. The rate of such transitions is
calculated based on detailed balance condition γi jni(1 − n j) =
γ jin j(1 − ni) and it was calculated in a similar manner in this
work. Using Eq. 6

γ ji = γi j exp
�
β
�
ε j − εi

��
. (15)

Since the formula for spontaneous transition rate was obtained
using statistical expression for ni, it is based on mean-field ap-
proach. Thus all computational methods currently existing (in-
cluding Monte Carlo) are at least partially based on mean-field
approach. In this sense MC method is inconsistent because it
does not reproduce the n(ε) dependence used to calculate the
rate of spontaneous jumps, as was discussed in Section 2.

The energy of hopping transitions had to be calculated as

Δεi j = ε j − εi in this work. This means that the self-action
effect, which is present if the site energies are calculated using
Eq. (5), was disregarded in this work. The reasons and the pos-
sible meaning of such an approach are given in the Discussion
section.

Since cyclic boundary conditions were assumed, an external
electric eddy field is applied to the cell in the direction of the
x-axis. The external field modifies the barriers between sites.
The hopping energies between sites i and j become

Δεi j = ε j − εi + αΔxi j, (16)

where

Δxi j = x j − xi, |x j − xi| ≤ L/2,
Δxi j = −sign(x j − xi)(L − |x j − xi|), |x j − xi| > L/2,

(17)

which is a sign-aware version of Eq. 9.
Thus under applied electric field γi j will change and a net

current will appear in the cell.
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Besides changing εi j and γi j the electric field will also cause
the redistribution of the occupation ni among the sites. Cal-
culation of these non-equilibrium values of ni, modified under
electric field, is addressed in the next section.

4. Solution of the system of balance equations

In a steady-state, the amounts of charge flowing in and out of
site i are equal, which can be written in the form of the charge
balance equation

�

j�i

[γi jni(1 − n j) − γ jin j(1 − ni)] = 0. (18)

System of Eqs. 18, written for each site, can be solved with
respect to ni. These equations are, in essence, similar to Kirch-
hoff’s current law and thus represent a non-linearized version
of the Miller-Abrahams resistor network method. An important
difference, however, is that in Miller-Abrahams method the re-
sistance Ri j of each pair is calculated assuming the equilibrium
values of ni. In Eqs. 18, the occupations ni will change with
the applied electric field. Thus field-induced Hubbard current
correlations can be partially accounted for using this mean-field
approach.

System of Eqs. 18 was used earlier to model carrier mobility
in organic semiconductors. The difference of the present ap-
proach is that Coulomb interactions and existence of Coulomb
gap are taken into account when calculating the energies of the
localized states.

The iteration scheme used in this work is the same as one
in [Cottaar-2006]. As the initial guess, the equilibrium values
of ni, calculated according to Section 2 were used. System of
equations 18 has multiple solutions (for example, ni = 0 is an
obvious solution). Thus an additional condition has to be pro-
vided to limit the number of solutions to just one. On the other
hand, the charge is not conserved during the iteration procedure,
and thus, charge conservation ought to be used as a constraint.

Charge conservation was used in this work as an additional
condition. To enforce this condition, after each iteration cycle,
the change of occupation δni was calculated for each impurity
site. Sites were divided into two categories with δni > 0 and
δni < 0 and sums

� |δni| were calculated for each category.
Finally, occupation of sites from the category with a larger sum
was scaled down in such way that after scaling, the sums of
positive and negative δni were equal. This procedure guarantees
charge conservation and keeps ni between 0 and 1.

The iterations were carried out in the same random order in
which the impurity sites were created. Convergence was always
achieved in a wide range of temperatures and electric field in-
tensities.

5. Calculation procedure

Here the summary of the entire calculation procedure is pre-
sented. In the first step, a random cell with a given number of
primary and compensating defects is generated. Then follows
the thermalization procedure in which, according to Section 2,

the equilibrium energies and occupation of each site are calcu-
lated for a given temperature.

In the next step, two transition rates (γi j and γ ji) are calcu-
lated for each pair of sites using formula Eq. 14 if Δεi j ≥ 0 and
Eq. 15 if Δεi j < 0. The value of Δεi j is calculated using Eq. 16.
At this step the equilibrium values of εi are used.

After this follows the relaxation step in which ni values are
allowed to change under the action of external electric field.
The steady-state non-equilibrium values of ni are found by so-
lution of balance equations, as described in Section 4.

Finally, the resistivity is calculated using Eq. 13.
The presented algorithm does not consider how changes of

ni in the electric field influence the site energies after relaxation
and uses equilibrium values of εi. It remains to be verified how
good such approximation is.

The described procedure was implemented using
C++ language and the source code is available at
https://gitlab.com/aavdonin/setols.

6. Results

6.1. Temperature dependence

The analysis of temperature dependence of resistivity calcu-
lated in the kBT range between 2.5 and 0.02 is presented in
Fig. 2. The calculations were carried out for several cells with
different number of impurity atoms (200, 500 and 1000 atoms)
to check the influence of the size effect. The compensation co-
efficient was set to b = 0.5; the localization radius a was set to
1/3. The electric field intensity was set to α = 0.0001, which
means that contribution of the external field to energy is much
smaller than both ε0 and kBT .

Calculations for 95 data points took respectively 1 min,
62 min and 2 h 58 min for cells with 200, 500, and 1000 im-
purity atoms on a desktop computer (i5-2400 quad core CPU,
3.1 GHz). The duration depends on the precision settings. The
largest change of site occupation after each iteration was used
as the convergence parameter δ = max(|nk

i − nk−1
i |), where k is

iteration number. In these calculations, the convergence crite-
rion was set to δ < 10−10. The convergence was achieved for
all data-points. To decrease the calculation time, nodes with
ni < δoc and 1 − ni < δoc were disregarded. Here δoc is the oc-
cupation threshold, which is used to filter the nodes with n ≈ 0
and n ≈ 1. Such nodes do not contribute significantly to the
conductance, according to Eq. 10. In the calculations, δoc was
set to 10−10.

There is no prominent size effect in the results which is due
to cyclic boundary conditions employed. However there is a
noticeable influence of random realizations even for relatively
large cells of 1000 impurity atoms. The calculation time in-
creases fast with the size of the cell but it is also greatly in-
fluenced by the realization of the cell. It seems that it is more
efficient to make calculations for many small cells and to use
some sort of cells-averaging than to make calculations on a sin-
gle large cell.

The Arrhenius plots of the resistivity are shown in the inset
of Fig. 2. The non-linearity of the ρ(T ) curves in the Arrhenius
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Figure 2: Temperature dependence of the local activation energy w of resistivity calculated for three randomly generated cells with various number of impurity
atoms at compensation of b = 0.5. Temperature is measured in units of e2/κd0. Values near the curves show the exponent p of the Mott law. The inset shows the
corresponding Arrhenius plots of the resistivity.

plot at low temperatures is a feature specific to hopping trans-
port. In this regime, the resistivity is described by Mott law

ρ = ρ0 exp
�T0

T

�p
, (19)

where ρ0 and T0 are phenomenological material parameters,
and the exponent p is less then one. In a three dimensional
sample p is expected to be 0.5. To calculate the value of the
exponent p in an objective way, the method of Zabrodskii plot
was used in this work. In this method, the argument of the ex-
ponential function w ≡ (T0/T )p is calculated as

w = − d ln ρ
d ln T

, (20)

and the result is plotted in a double logarithm scale. In such
plot, the slope of a linear region provides the value of p.

These calculations are shown in Fig. 2, where there are two
linear regions. Below kBT = 0.35, there is p ≈ 0.5 for all curves

with a precision of about 10%. The behavior of ρ(T ) in this re-
gion matches well the predictions of the variable range hopping
(VRH) theory in the form proposed by Efros and Shklovskii.
The linearity in this region is not perfect because the transport
depends greatly on the particular distribution of localized sites
inside the cell and on the properties of the percolation paths.

Above kBT = 0.35, there is p ≈ 1.4. I interpret the change
of p from 0.5 to 1.4 as the transition from VRH to nearest-
neighbor hopping. At nearest-neighbor hopping, a constant
hopping energy is expected, which corresponds to p = 1. Value
of p = 1.4 suggests that in this region, the hopping energy is
decreasing with the increasing temperature. I attribute this de-
crease to overlapping of the bands of occupied and empty states
and to disappearance of the Coulomb gap, visualized in Fig. 1.
This confirms findings from [Avdonin-2019], where a similar
decrease of the activation energy at high temperatures was ex-
perimentally observed.

There is no crossover from Efros Shklovskii VRH with p =

6

Figure 3: Maps of the electron flow projected on x-y plane, calculated for kBT = 0.02, 0.1, 0.2 and 0.4. Thickness of line segments connecting individual sites is
proportional to current between the sites. Localized sites are not shown. Blue color marks segments where current flow is opposite to the applied electric field. Each
of the maps shows four adjacent cells produced by shifting the original cell using the CBC.

1/2 to Mott VRH regime with p = 1/4 in Fig. 1, which is as-
sumed to happen at partial filling of the Coulomb gap, when
DOS at Fermi level becomes non-zero. There is experimen-
tal evidence that such crossover occurs, however, there are
also reports where such crossover does not occur and refer-
ences therein). Instead, in this work, there is a direct transition
from Efros Shklovskii VRH to nearest-neighbor hopping. A
qualitatively similar result was obtained by MC simulations in
[Ruiz-1995], however, with p ≈ 1 in nearest-neighbor hopping
regime.

In order to visualize the transition from nearest-neighbor
hopping to VRH the evolution of the charge flow with temper-
ature is shown in Fig. 3. The flow maps were calculated for the
cell with 500 impurities, which corresponds to the solid purple
line in Fig. 2. Maps show the projections of the flow on the
x-y plane. The electric field is applied along the x-axis. The
thickness of the line segments connecting each pair of impu-
rities i, j is proportional to the current between these defects.
To preserve the best contrast, the max value was used for pixel
color when parts of the segments have been overlapping. Red
color was used for segments when current direction was along
the applied field and blue color was used when the current was
flowing against the electric field. The flows in all maps are
normalized in such a way that the segment with the strongest
current in a given map is drawn with the largest width (of 12
pixels) in all maps. The labels on maps show the temperature
of the cell.

Above kBT = 0.4 (not shown), there is a very gradual in-
crease in the density of the flow lines and uniformity of the
color in the map. Below kBT = 0.35, where the Mott law is
observed in Fig. 2, there is a strong reduction of the number of
flow paths and appearance of a percolation path at low temper-
atures.

The blue-colored segments in Fig. 3 correspond to site pairs
where current is driven by non-equilibrium concentration gra-
dient rather than by the external field. These segments are usu-
ally almost perpendicular to the external electric field direction
(x-axis). They appear due to redistribution of the equilibrium
occupation during the relaxation procedure.

6.2. Electric field dependence

The current density J in hopping transport shows a non-
ohmic dependence on electric field E and in a certain range of
field intensities it is often described by J ∼ exp(γ

√
E), where γ

is a coefficient.
Figure 4 shows the electric field dependence of conductivity

calculated using the procedure from this article. Calculations
were made for cells of 500 sites at compensation of 0.5. Curves
were calculated using the same cell as the one in Fig. 2 at vari-
ous temperatures, shown near each curve.

It was difficult to make calculations for larger cells because
in a limited region of electric fields, the convergence tends to
be very slow at kBT = 0.02. It is the region in the vicinity of
the bending point where the conductivity mode changes from
ohmic to the non-ohmic regime. In the calculation, both the
occupation threshold and the convergence criterion were set to
10−10.

Qualitatively our results match the results obtained in
[Hayashi-2018]. There is an ohmic region at very small electric
fields which is followed by a non-ohmic region in which curves
follow the J ∼ exp(γ

√
E) law. The ohmic range increases

with temperature and γ decreases with temperature (see inset
of Fig. 4). On the other hand, there is a much stronger response
to electric field, 5 − 6 order of magnitude in this work against
1−2 orders of magnitude in [Hayashi-2018]. The source of this
difference is not clear. One possible source is in how the den-
sity of states is defined in the calculation. In [Hayashi-2018],
authors use a constant DOS in a 2D cell. Here the DOS with
the Coulomb gap is used in a 3D cell. Another possible source
of the difference is in HCC, which are partially accounted for in
this algorithm. It was demonstrated in the literature that HCC
increase the resistivity by a factor of about two in the ohmic
regime. However, the HCC are expected to increase with the
electric field, and the influence of HCC can in principle be much
stronger. Changes of resistivity as large as 7 orders of magni-
tude were observed experimentally.

To show that HCC are indeed accounted for (maybe partially)
in this method, it is enough to look at the correlation term of the
pair current

IC
i j = −e(γi j − γ ji)(< nin j > −n0

i n0
j ), (21)
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Figure 4: Electrical conductivity in hopping regime vs. square root of the electric field intensity, α = eEd0/ε0. Values near each curve show the temperature kBT of
the cell. In the inset: the same data plotted against α0.5/kBT to show the universal behavior.

where n0
i is equilibrium occupation of the sites and ni is oc-

cupation under the applied electric field. Due to the relaxation
procedure described in Section 4, the correlation current is non-
zero in the presented results.

7. Discussion

7.1. Self-action

As was mentioned in Section 3, the self-action correction was
not taken into account in this method. To define self-action let

us assume that site with index 1 is occupied (n1 = 1) and site 2
is empty (n2 = 0). If site energies are calculated using Eq. (5),
then the energy of transition 1→ 2 is

ε12 = ε2 − ε1 − 1/r12. (22)

Thus ε12 � ε2−ε1 and thus, the last term in Eq. 22 represents the
self-action correction. In simple words, the self-action means
that the energy of the final state was calculated assuming that
the initial state is still occupied.

Such correction is routinely used in MC methods. In the
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mean-field approach, however, the correction of self-action is
more complicated. This is because both the initial and the fi-
nal sites always have some finite occupation between 0 and 1.
Thus the self-action correction has to be applied to both the ini-
tial and the final state. In addition, the transition rate in Eq. (14)
is calculated assuming that exactly one electron has been trans-
ferred from site i to site j. Thus the transfer energy has to be
calculated as if only one electron is present on both sites during
the transfer i.e. n1 + n2 = 1. Such condition is almost never
met, and thus, the extra charge n1 + n2 − 1 has to be removed
(or added) from the pair to the surrounding impurities.

The corrected energies of the initial 1 and the final state 2 can
be written as

ε�1 = ε1 − n2

r12
+
�

k�1,2

n1 + n2 − 1
r1k

,

ε�2 = ε2 − n1

r12
+
�

k�1,2

n1 + n2 − 1
r2k

.

(23)

Here the second term represents the correction of self-action,
and the third term represents the correction of the extra charge
of the pair transferred to the surrounding sites k. Then the tran-
sition energy ε12 = ε

�
2 − ε�1 is

ε12 = ε2 − ε1 − n1 − n2

r12
+
�

k�1,2

(n1 + n2 − 1)
�

1
r2k
− 1

r1k

�
. (24)

In case when n1 = 1 and n2 = 0 this equation simplifies to
usual formula of Eq. 22. When using the Eq. (24), two issues
were encountered. First, it is not clear how to distribute the ex-
tra charge n1 + n2 − 1 between the surrounding ions k, since the
charge can be distributed in multiple ways. Several approaches
were considered. However, non of the approaches helped with
the second (and more severe) issue that for some small number
of pairs, the sign of the calculated transfer energy εi j was con-
tradicting the equilibrium occupations ni and n j of these sites. It
is expected that the energy of transfer from the site with larger
occupation to a site with smaller occupation will be positive,
i.e. εi j > 0 if ni > n j and vice versa. In the simulation, this
condition could not be fulfilled for all pairs.

Unable to fix this controversy, I have postulated that the
transfer energy in mean-field approach has to be calculated
without self-action. To justify such a decision the following
model is proposed. In the mean-field approach the electrons are
“smeared” over the available impurity sites with certain proba-
bilities. In such model, one can imagine that only a small frac-
tion of electron charge Δn � e is transferred at a time from
given site 1 to site 2. In such case

ε12 = ε2 − ε1 − Δn/r12 ≈ ε2 − ε1, (25)

and self-action is negligible. In a steady-state small trans-
fers from any given site are compensated by charge-equivalent
transfers from the other surrounding sites to the given site. So
that no momentary accumulation and depletion of charge oc-
curs on any of sites. The current then occurs as a continuous
flow of the smeared electron charge.

This model seems to contradict the entire idea of hopping as
a sequence of tunneling events performed by a single electron.
However, it might be justified from the perspective of quantum
mechanical approach. In such approach each electron will be
in a superposition over all impurity states, and even at T = 0,
none of the sites will have occupation probability of zero or
one. The current has to be viewed as the flow of the probability
amplitude.

Interestingly, such flow-model takes into account at no ex-
tra cost the “multiple electron jump correlations” also called
“Coulomb correlations”. This is because in the mean-field ap-
proach the current flows simultaneously through all pairs. In the
MC approach, this kind of correlation is expensive to simulate,
even in the case of only two-electron correlations.

8. Summary

Mean-field approach was used to simulate resistivity in hop-
ping regime in a wide range of temperatures and electric fields.
The presented method takes into account particularities of the
distribution of DOS in the presence of long-range Coulomb
interactions. It simulates the Coulomb gap with zero DOS at
Fermi level at T = 0 and the filling of the Coulomb gap with
increasing temperature. It takes into account energy-to-distance
correlations of jumps, Hubbard current correlations and multi-
electron jump correlations. Most of these features can be simu-
lated only using Monte Carlo simulations.

Compared to the Monte Carlo method, this method is be-
lieved to be faster and produces smooth dependencies. It repro-
duces the Mott law at low temperatures with the power factor
of 0.5, in agreement with the prediction of Efros and Shklovskii
for the DOS with a Coulomb gap. No transition to Mott variable
range hopping regime was observed at higher temperatures.
Instead, a direct transition to nearest-neighbor hopping is ob-
served. In this regime, a decrease of activation energy with in-
creasing temperature is predicted. This method also reproduces
the ohmic behavior at small electric fields and J ∼ exp(γ

√
E)

dependence at higher electric fields.
The presented approach has the following inconsistencies.

First, the pair transfer rate γi j was not calculated using mean-
field model but using Miller-Abrahams transfer rates based on
discrete single-electron tunneling. It is assumed that the mean-
field transfer rate is the same. Second, the energies of the sites
are not recalculated during the relaxation procedure and are as-
sumed to be close to those at equilibrium. This approxima-
tion should be acceptable in the ohmic regime at small electric
fields.
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