Structural dynamics of the GW182 silencing domain
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INTRODUCTION

In recent years, there have appeared a significant number of works proving that structural dynamics governs the function of biological molecules to no less extent than the protein sequence and its 3D

structure. The GW182 protein is one of the crucial players in eukaryotic miRNA-mediated gene silencing, since it specifically interacts with the Argonaute (Ago) proteins and recruits the huge CCR4-NOT
deadenylase complex to the targeted mRNA to trigger both translational repression at the 5’ terminus and mRNA degradation from the 3’ end. miRNA-dependent gene silencing by the GW182 protein
is mediated by its C-terminal half called the silencing domain (SD). Structural studies of the GW182 silencing domain is challenging due to its intrinsically disordered character.

GW182s are predicted to be mostly disordered except for two globular domains: the ubiquitin associated domain and the RRM. Such protein structures are neither suitable for X-ray crystallography nor
for NMR due to their dynamic character. However, quite detailed insight into the properties of proteins containing disordered regions can be provided by hydrogen-deuterium exchange mass
spectrometry (HDX MS). This technique allows mapping of the stability of H-bonding networks, since the kinetics of the H/D exchange reflects the local dynamics of the protein structural elements. In
this work, we reveal the structural dynamics of the human GW182 silencing domain.
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