Structural Anisotropy of MBE-grown CdTe/SnTe/CdTe//GaAs(001) Films

A. Sulich, E. Łusakowska, P. Dziawa and J.Z. Domagala

Institute of Physics PAS, AI. Lotników 32/46, PL-02-668 Warsaw, Poland

Introduction

SnTe belongs to the topological crystalline insulators, which are interesting materials, important especially from the point of view electronics and spintronics development.

The aim of our work was SnTe samples crystallographic properties and surface nanoripples morphology investigation. As the experimental techniques highresolution X-ray diffraction and atomic force microscopy were used.

rock salt 100 nm CdTe structure 20-1000 nm SnTe zinc blende structure average lattice 4000 nm CdTe(100) parameters: a⊥ = 6.4856 (±0.0002) Å c.a. 7 nm ZnTe $a_{\parallel} = 6.480 (\pm 0.003) Å$ GaAs with 2° off-cut zinc blende toward <100> direction structure a = 5.6535 A

High-Resolution X-ray Diffraction Results

	GaAs CdTe					SnTe					
Sample's number	GaAs off-cut	Lattice misorientation to GaAs	Δ Phi to GaAs	Lattice vertical strains	Lattice relaxation	Lattice misorientation to CdTe	Out-of- plane lattice parameter	In-plane lattice parameter	Lattice vertical strains	Lattice relaxation	
	[deg]	[deg]	[deg]	ε⊥ x10⁴	[%]	[deg]	a⊥ [Å] (±0.0002)	a _∥ [Å] (± 0.003)	ε⊥ x10⁴	[%]	
134-15	1.94	0.55	16.37	8.3	99.2	0.01	6.3232	6.333	-10.2	93.5	

Atomic Force Microscopy Results

Growth Conditions

SnTe Substrate T Sample's thickness number

Te/SnTe Nanoripples' molecular orientation close to flux ratio

135-15	1.97	0.50	14.41	3.9	99.6	0.08	6.3238	6.331	-7.5	96.5
136-15	1.98	0.67	19.20	2.5	99.8	0.06	6.3267	6.335	-8.6	96.9
137-15	2.03	0.68	17.89	3.2	99.7	0.14	6.3228	6.330	-7.5	96.9
138-15	2.00	0.69	19.68	4.6	99.6	0.10	6.3248	6.336	-11.7	95.1
139-15	2.00	0.62	17.33	3.1	99.7	0.12	6.3225	6.338	-16.1	94.9

[°C] [nm] 1000 310 0,0000 <120> 138-15 0,0051 <120> 1000 310 139-15 0,0089 <100> 1000 270 136-15 0,0093 <100> 1000 310 137-15 0,0135 1000 310 <100> 135-15 133-15 80 310 0,0139 <100> 310 0,0148 absent 131-15 20 0,0156 310 <100> 134-15 888 Ref. absent sample

Reference sample - GaAs substrate with CdTe buffer:

131-15 20 nm SnTe: 133-15 80 nm SnTe: 136-15 1000 nm SnTe:

SnTe lattice structure

Summary

Preferred SnTe growth order along <100>

□ the samples' surface is shaped into nanoripples oriented close to <120> or <100> crystallographic directions,

□ the differences between these directions was found to be related rather to Te/SnTe molecular flux ratio than to GaAs off-cut direction and the layers misorientation.

Acknowledgments: This work was supported by National Science Centre (Poland) research project 2014/15/B/ST3/03833.