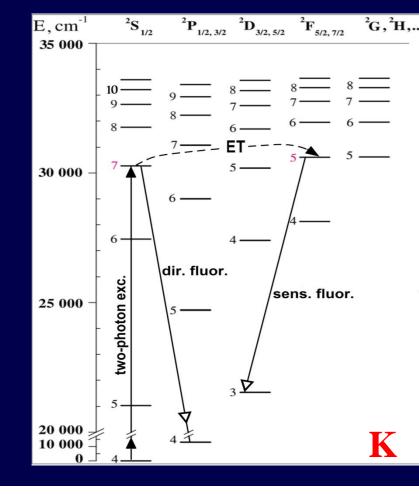
ENERGY TRANSFER REACTION $K(4S) + K(7S) \rightarrow K(4S) + K(5F)$ THEORY AND EXPERIMENT

M. Głódź^a, A. Huzandrov^a, S. Magnier^b L. Petrov^{ca}, I. Sydoryk^a, J. Szonert^a, J. Klavins^d, K.Kowalski^a

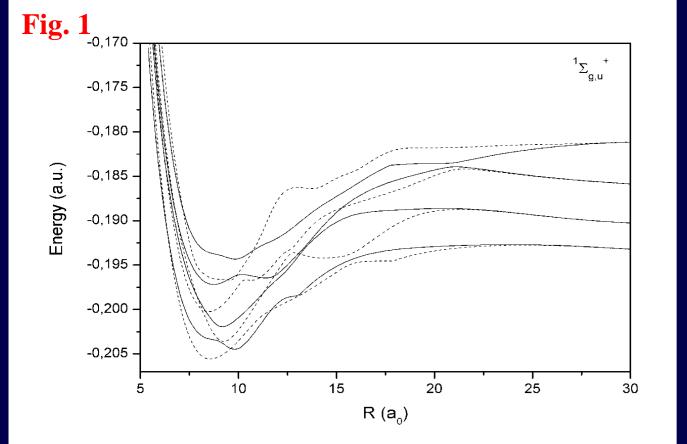
^a Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland

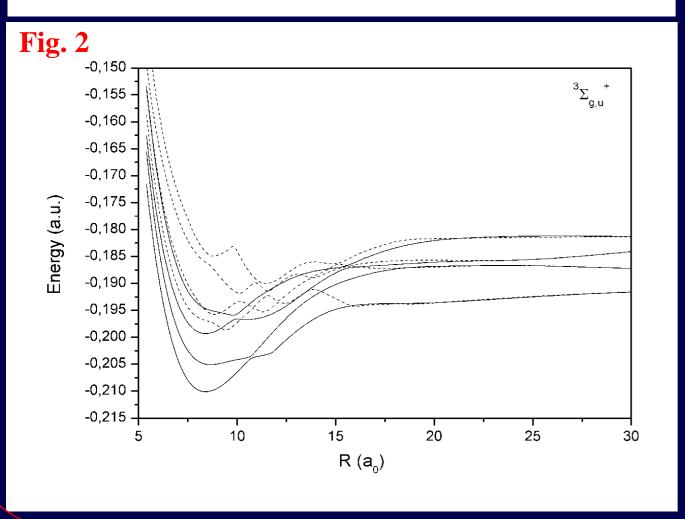

^b Univ. Lille, CNRS, UMR 8523- PhLAM- Laboratoire de Physique des Lasers, Atomes et Molécules, F-59000 Lille, France

^c Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia; Boul. Tsarigradsko Shosse 72, Bulgaria

^d Institute of Atomic Physics and Spectroscopy, University of Latvia, 1586 Riga, Latvia

A comparison of theoretical and experimental results regarding the excitation energy transfer (ET) reaction $K(4s) + K(7s) \rightarrow K(4s) + K(5f)-332 \text{ cm}^{-1}$ in thermal collisions is presented. Calculations are based on theoretical adiabatic K_2 potential energy curves (PECs) and on the use of the semi-classical multicrossing Landau-Zener model. Contributions due to various molecular symmetries are calculated for temperatures of $310 \div 1000 \text{ K}$. Experiment was carried out in pure potassium vapor by means of time-resolved laser-induced fluorescence. Pulsed laser excitation and photon counting technique was applied. For the temperature range $428 \div 451 \text{ K}$ used in the experiment, the calculated cross-section varies in the range of $(2.09 \div 2.04) \times 10^{-14} \text{ cm}^2$ and agrees well with the average of experimental values $1.8(8) \times 10^{-14} \text{ cm}^2$.


THEORY



PECs involved in the ET calculations were determined within the pseudo-potential method, in a similar way as in Ref. [1].-A satisfying agreement with experimental molecular data listed in Ref . [1] was obtained. Theoretical ET cross sections were determined by using a semi-classical multicrossing Landau-Zener (LZ) model previously applied *e. g.*, in energy pooling between sodium and potassium atoms [2,3]. Calculations were based on the estimation of the population transfer from one PEC to another in the vicinity of each avoided crossing. PECs for^{1.3} $\Sigma_{g.u}^+$ molecular states correlated with K(4*s*)+K(6*p*) and up to K(4*s*)+K(5*f*) were considered (see **Figs. 1**, 2 and **K-atom levels**). LZ parameters (position R_n , diabatic energy U_n , splitting V_n between the two PECs, difference of the slopes ΔF_n) were extracted for each avoided crossing. They are listed in **Table I**, and the value P_n of LZ probability of transition at the avoided crossing *n* is given for one value of impact parameter (*b*=0) and one collision energy (E=400 K). The probabilities are estimated to be ≈ 0.900 for several impact parameters and collision energies, which leads to a nearly full population transfer from one PEC to the other at the corresponding avoided crossing.

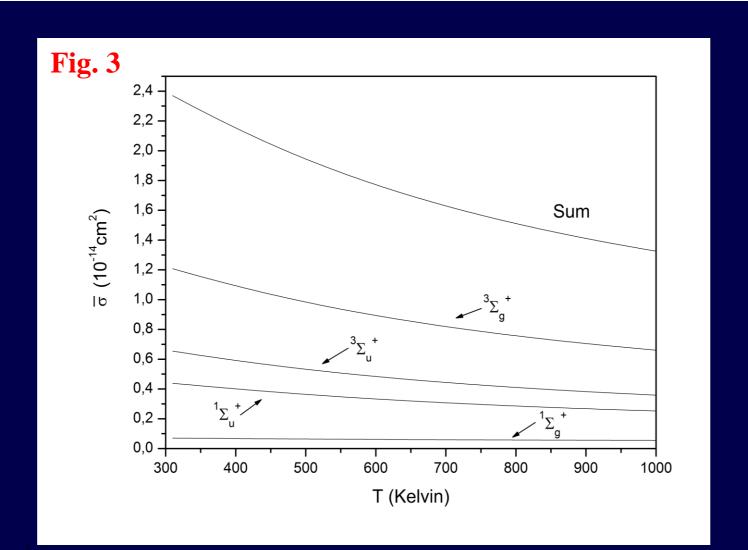
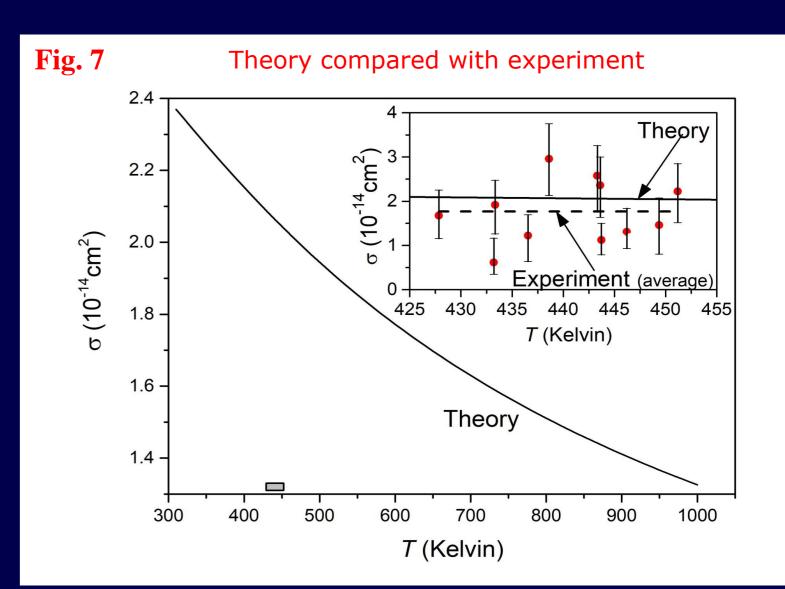

Total cross sections $\sigma(v)$ for each molecular symmetry were determined by integrating the

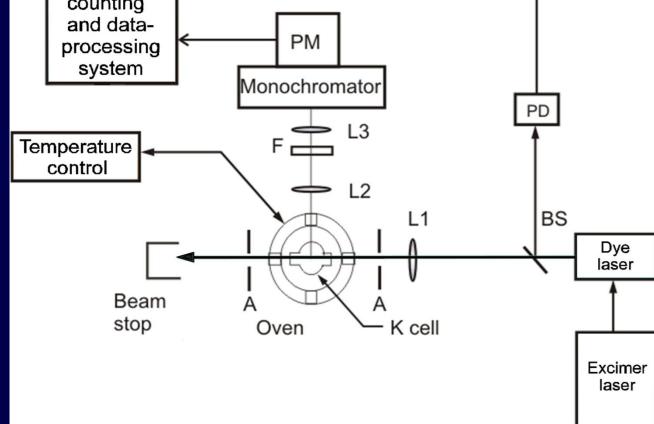
Table I: Landau-Zener parameters $(R_n, U_n, V_n, \Delta F_n)$ of each avoided crossing *n* present in the $^{1,3}\Sigma^+_{\sigma,u}$ potential energy curves involved in the energy transfer reaction $K(4s) + K(7s) \rightarrow K(4s) + K(5f)$. Probability value $(P_n(b, E) = \exp(-2\pi)$ $\overline{\upsilon_{R_n}(b,E)\Delta F_n}$ is indicated for b = 0 and given in atomic unit $P_n(0, 400K)$ States U_n ΔF_{m} ${}^{1}\Sigma_{g}^{+}$ 1.64×10^{-2} 4*s5d* – 4*s*7*s* 06.66 -7.10x10 7.14x10⁻¹ 0.942 -1.16×10^{-2} 4s5d - 4s7s = 13.44 2.54×10^{-3} 7.82x10⁻⁵ 0.995 -2.47×10^{-3} 2.17×10^{-4} 4s7s - 4s5f = 20.823 6.06×10^{-4} 0.859 ${}^{1}\Sigma_{u}^{+}$ 4.15×10^{-3} 4s6p - 4s5d = 09.65 -2.25×10^{-2} 5.74×10⁻⁴ 0.863

final population of each possible exit channel correlated with 4s+5f over different impact parameters. These values are still dependent on the collision energy (the relative velocity vof the colliding partners). Bearing in mind the vapour-cell experiment, in which thermally averaged collisional transfer rates R(T) are measured at various temperatures T (see below), the relevant thermally averaged cross sections were calculated defined as: $\overline{\sigma}(T) = \langle \sigma(v)v \rangle / \overline{v}$, where $\overline{v} = \sqrt{8k_BT/\pi\mu}$ is the mean relative velocity of atoms at T, with μ - their reduced mass, and k_B - the Boltzmann constant. $\langle \sigma(v)v \rangle = k(T)$ is the thermally averaged rate constant at T, related to R(T) as: k(T)=R(T)/N, where N is atomic number density. Sum and contributions of each molecular symmetry are displayed in Fig. 3 for the thermally averaged cross sections. The major contribution comes from avoided crossings of ${}^{3}\Sigma_{\mu}^{+}$ and ${}^{3}\Sigma_{\mu}^{+}$ molecular states.

		-					
	2	4s6p - 4s5d	15.69	-1.31x10 ⁻²	5.87x10 ⁻⁴	1.15x10 ⁻³	0.565
	3	4s5d - 4s7s	08.15	-1.87×10^{-2}	1.23×10^{-4}	3.03×10^{-3}	0.991
	4	4s5d - 4s7s	12.66	-1.22×10^{-2}	2.13×10^{-4}	7.27×10^{-3}	0.985
	5	4s7s - 4s5f	09.93	-1.55×10^{-2}	7.00×10^{-4}	9.09x10 ⁻³	0.903
	6	4s7s - 4s5f	14.48	-6.34x10 ⁻³	1.73x10 ⁻³	3.62×10^{-3}	0.200
	7	4s7s - 4s5f	21.44	-1.68x10 ⁻³	1.23x10 ⁻³	5.68x10 ⁻⁴	0.005
	$^{3}\Sigma_{g}^{+}$						
		4.6. 4.5.1	10.67	$2.25 \cdot 10^{-2}$	2 2 2 10 ⁻⁴	2 00 10-3	0.000
	1	4s6p – 4s5d	10.67	-2.25×10^{-2}	2.23×10^{-4}	3.00×10^{-3}	0.969
	2	4s5d - 4s7s	13.52	-1.11×10^{-2}	8.79x10 ⁻⁴	2.57×10^{-2}	0.944
	3	4s7s - 4s5f	09.88	-1.50x10 ⁻²	3.99x10 ⁻⁴	3.00×10^{-3}	0.903
	4	4s7s - 4s5f	15.48	-5.78x10 ⁻²	2.43x10 ⁻⁴	1.58x10 ⁻³	0.929
	${}^{3}\Sigma_{u}^{+}$						
	Δ_u			2	5	2	
	1	4s6p - 4s5d	10.81	-1.32×10^{-2}	9.32x10 ⁻⁵	2.81×10^{-3}	0.994
	2	4s6p – 4s5d	12.09	-1.21×10^{-2}	1.90x10 ⁻⁴	2.31×10^{-3}	0.971
	3	4s5d - 4s7s	11.57	-1.06x10 ⁻²	3.96x10 ⁻⁴	2.84×10^{-3}	0.900
	4	4s5d - 4s7s	13.79	-7.66x10 ⁻³	9.18x10 ⁻⁵	1.78x10 ⁻³	0.991
	5	4s5d - 4s7s	15.74	-5.49x10 ⁻³	4.56x10 ⁻⁵	7.43x10 ⁻³	0.995
	6	4s7s - 4s5f	11.06	-8.53x10 ⁻³	1.00×10^{-4}	1.18x10 ⁻³	0.984
I							

[1] Magnier S, Aubert-Frécon M, Allouche AR. Theoretical determination of highly excited states of K_2 correlated adiabatically above K(4p)+K(4p). J Chem Phys 2004; 121: 1771-1781.

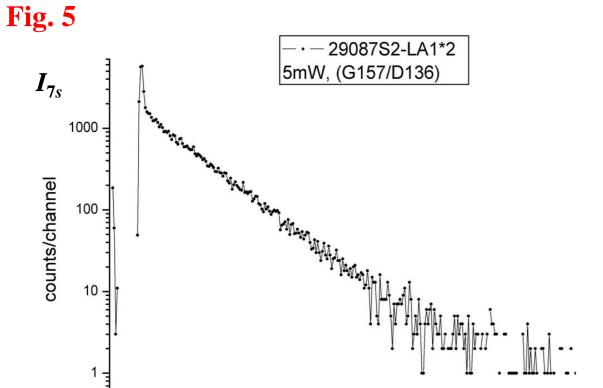

[2] Guldberg-Kjaer S, De Filipo G, Milosevic S, Magnier S, Pedersen JOP, Allegrini M. Reverse energy-pooling collisions: $K(5D)+Na(3S) \rightarrow K(4P)+Na(3P)$. Phys Rev A 1997; 55: R2515-8.


[3] Yurova IYu, Dulieu O, Magnier S, Masnou-Seeuws F, Ostrovskii VN. Structures in the long-range potential curves of Na2. II. Application to the semiclassical study of the energy pooling process between two excited sodium atoms. J Phys B 1994; 27: 3659-75.

EXPERIMENT

	Start	Fig 4	
Photon		1.6.4	
L counting			

The potassium atoms in a glass vapour-cell were excited to the 7*s* state by short laser pulses (λ =660.4 nm) in the two-photon 4*s* \rightarrow 7*s* transition. The development in time of the direct-fluorescence I_{7s} and of the collisionally sensitized fluorescence I_{5f} was registered perpendicular to the laser beam, on the respective transitions: 7*s* \rightarrow 4*p* (λ_{7s} =579.2 nm) and 5*f* \rightarrow 3*d* (λ_{5f} =1102.1 nm), see **Fig. 4** and the **K energy level diagram**. The measurements were carried out for vapour temperature varied in the range of 428-451 K, which corresponded to the range of 9.2x10¹²-3.5x10¹³ cm⁻³ of the number density *N* of



Pulsed dye laser (Δt = 7 ns, Δν = 4 GHz, rep rate 90 Hz)
Cell made of alkali resistant Corning 1720 glass, filled with droplet of pure metal, two-fold magnetic shields, 5 thermocouples attached to the cell surface
Oven: two-chambers with separately controlled temperatures
Monochromator: horizontal slits, 1.5 mm wide, 6 nm resolution
IR sensitive (S1) photomultiplier, QE = 0.3% (0.02%) for direct (sensitized) fluorescence, cooled down to 220 K; fast preamplifier
Photon counters:

(i) EG&G PAR 914P multichannel scaler (5 ns resolution)
(ii) Stanford Research SR400 for auxiliary measurements
PD fast photodiode, F filters, A apertures, L lenses, BS beam splitter

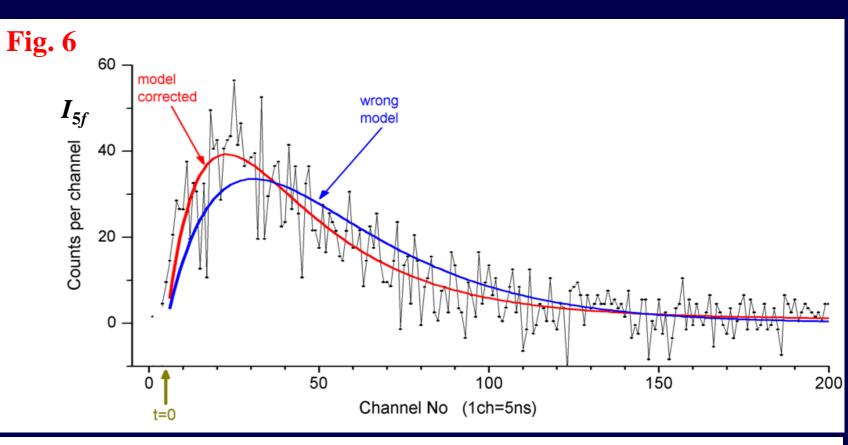
Relative spectral sensitivity determined with callibrated tungsten-ribbon lamp

potassium atoms. The upper limit for the acceptable laser-beam intensity was established as a value above which processes "interfering" with the $7s \rightarrow 5f$ transfer were evidenced. Under the assumption that 5f state is populated only by the direct $7s \rightarrow 5f$ collisional transfer (with the rate $R_{7s \rightarrow 5f}$), and that the 7s and 5f states' populations N_i decay with their respective effective rates Γ_{7s} and Γ_{5f} (each consisting of the decay rates due to: spontaneous decay, the total collisional quenching and the BBR induced transitions), the simple two rate-equation model (Eqs (1), (2)) represents the evolution in time of these populations (with no back-stream), see *e.g.*, [4]. Solutions of (2) with (1), under the initial conditions: $N_{7s}(t=0)=N_{7s}^0$, $N_{5f}(t=0)=0$, are a single- and a double-exponential functions for N_{7s} and N_{5f} , respectively. With these solutions for N_i and with the relation $I_i = A_{i-k} N_i$, where A_{i-k} are Einstein coefficients (ECs), one obtains functions (1a) and (2a) for time dependence of intensities I_{7s} and I_{5f} to be fitted to the corresponding registered signals. The calibration factor ξ , for the spectral sensitivity of the system, is also introduced into (2a).

$$\frac{|N_{7s}|}{dt} = -\Gamma_{7s}N_{7s} \qquad (1) \qquad | \qquad I_{7s} = I_{7s}^{0}e^{-\Gamma_{7s}t} \qquad (1a)$$

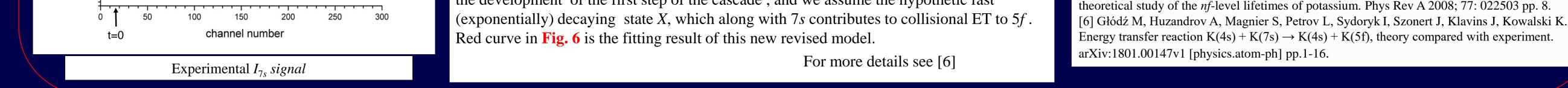
 $\frac{dN_{5f}}{dt} = R_{7s \to 5f} N_{7s} - \Gamma_{5f} N_{5f} \qquad (2) \qquad | \qquad I_{5f} = \xi \frac{A_{5f-3d}}{A_{7s-4p}} I_{7s}^0 \frac{R_{7s \to 5f}}{\Gamma_{5f} - \Gamma_{7s}} \left(e^{-\Gamma_{7s}t} - e^{-\Gamma_{5f}t} \right) \tag{2a}$

In the framework of this model, the experimental values for $\sigma_{7s \rightarrow 5f}$ could be determined from the rates $R_{7s \rightarrow 5f}$ obtained by fitting (2a) to fluorescence signals from 5*f* state (**Fig. (6**), blue curve) and by using the relation $\sigma_{7s \rightarrow 5f} = R_{7s \rightarrow 5f} / N\overline{\upsilon}$. ECs were taken from NIST data, values for I_{7s}^{0} and for Γ_{7s} were obtained by fitting (1a) to experimental I_{7s} signals, like this in **Fig. 5** (in fitting a number of initial channels, in which a short "peak" was observed passed t=0, were skipped); values for Γ_{5f} were taken from our other experiment [6]. $R_{7s \rightarrow 5f}$ was the only free parameter of the fit.


It turned out, that to get a more accurate reconstruction of the registered I_{5f} signals, additional processes should be considered Thus, additional population of the 5*f* state by ET from a short living state *X*, and by spontaneous emission from a long living state *Y* was assumed. (The latter was probably the 6*d* state; both were excited about t=0). In the revised model, two following double-exponential expressions were added to (2b)

 $I_{5f}^{(X)} = \alpha^{(X)} \left(e^{-\Gamma_X t} - e^{-\Gamma_{5f} t} \right) / \left(\Gamma_{5f} - \Gamma_X \right) \quad \text{and} \quad I_{5f}^{(6d)} = \alpha^{6d} \left(e^{-\Gamma_{6d} t} - e^{-\Gamma_{5f} t} \right) / \left(\Gamma_{5f} - \Gamma_{6d} \right).$

Analysing the data, also those from various suplemental measurements, we found that, strong bursts of photons were generated along the laser beam just after 7s excitation at various wavelength (*e.g.*, due to observed in the literature, superradiant cascading and/or ASE. The 6*d* state could be then populated *e.g.*, *via* excitation of fast dissociating molecular states correlated with the asymptote 4s+6d. To identify the *X* state we refer to the earlier neglected short peak (**Fig. 5**). We attribute it to the abrupt depleting of 7*s* population due to the development of the first step of the cascade , and we assume the hypothetic fast


The calculated thermally averaged cross sections, sum of contributions of each molecular symmetry *vs* temperature *T*. Temperature range used in the experiment is marked with gray bar over the *T*-axis.

Inset: The theoretical predictions in this range (full line) compared with the experimental values (red dots) with the dashed line marking their average.

Comparison of curve fitting to experimental I_{5f} data, for a two-level (blue curve) and four-level (red curve) model

[4] Ekers A, Głódź M, Szonert J, Bieniak B, Fronc K, Radelitski T. Inelastic cross-sections and natural lifetimes for the $6^2D_{3/2; 5=2}$ and $8^2S_{1/2}$ states of Rb. Eur Phys J D 2000; 8: 49-58. [5] Głódź M, Huzandrov A, Safronova MS, Sydoryk I, Szonert J, Klavins J. Experimental and theoretical study of the *nf*-level lifetimes of potassium. Phys Rev A 2008; 77: 022503 pp. 8.

