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1 Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands
2 Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland

†m.plodzien@tue.nl

MOTIVATION
Due to the remarkable progress in our understanding of molecular structures, a tremen-
dous development in life sciences has succeeded in providing explanations of different
cell-biology phenomena. On a current stage of description a biological complexity of
mesoscopic objects along with quantum behavior of the simplest elements lead together
to many unsolved questions awaiting comprehensive answers. In this way, a brand new
interdisciplinary field of ’quantum biology’ become natural area for combining quantum
physical methods and tools to investigate, model and simulate biological systems on a
mesoscopic level

The most fundamental biological processes, such a protein folding, DNA repair and
muscle contractions are related to transduction of the energy relased in the chemical re-
action into work. Many biological processes takes energy from hydrolisis of adenosine
triphosphate (ATP). An ATP molecule binds to a specific site on the protein, react with
water and releases 0.49 eV of energy. Each site on the protein has permament dipole mo-
ment which is responsible for energy excitation due to dipole-dipole interactions. There
arises important question about quantum description of energy transport in biological
structures.

In 1970’s Davydov proposed a
mechanism for the localization and transport of vibrational energy in α-helix region of a
proteins. Such a region is a chain of amino acids held in helical shape by longitudinal
hydrogen bonds where the vibrational degrees of freedom are coupled to exciton energy
operator forming a exciton-phonon localized state - a soliton.

Proposed model has been used
for theoretical description of experimentaly observed unconventional absorption band of
model for protein. However, direct experimental evidence of soliton mechanism is still
missing. Can we contruct quantum simulator for such a system ?

QUANTUM DESCRIPTION

System Hamiltonian is given by

Ĥ = Ĥexc + Ĥvib (1)

Ĥvib =
∑
i

~ω0b̂
†
i b̂i, (2)

Ĥexc =
∑
i

Wiâ
†
i âi +

∑
i

Ji+1,i(â
†
i+1âi + â†i âi+1), (3)

where on-site and hopping energies depends on relative distance changes Wi = W0 +
gW (ui+1 + ui−1), Ji+1,i = −J0 + gJ(ui+1 − ui)

In semi-classical approximation we assume that wave-function factorizes on excitation
part |ψ(t)〉 =

∑
i ψi(t)â

†
i |vac〉 and phonon part (which is in a coherent state) we can use

Davydov anzatz:
|D〉 ≡
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ψi(t)â
†
ie

∑
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†
j−β

∗
j b̂j |0〉ex|0〉ph. (4)

Time evolution of the Schrödinger for the full Hamiltonian reduces to time-evolution of
Davydov’s equations:

i
dψi(t)

dt
= −(ψi+1 + ψi−1) + gW (ui+1 − ui−1)ψi (5a)

+ gJ [ψi+1(ui+1 − ui) + ψi−1(ui − ui−1)],
dui(t)

dt
= pi(t), (5b)

dpi(t)

dt
= −ω2

0ui(t) + gWω0(|ψi+1|2 − |ψi−1|2) (5c)

+ gJω0[ψ
∗
i (ψi+1 − ψi−1) + ψi(ψ

∗
i+1 − ψ∗i−1)],

where ui is an expectation value of the displacement operator. Davydov equations give
rise to self-stabilization mechanism for excitation.
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EXCITATION STABILIZATION

The general aim for the considered system described by the Hamiltonian Ĥ = Ĥvib+ Ĥexc

is to give predictive conclusions on its dynamical properties depending on the param-
eters gW , gJ , and ω0. For example, one of the questions having no decisive answer is
related to the problem of the spreading of the excitation initially being localized in a
chosen site K |Ψ0〉 = â†K |vac〉, or it is slightly delocalized in neighboring sites |Ψ̃0〉 =
1√
2
(â†K + â†K+1)|vac〉, where |vac〉 is a vacuum state of the system fulfilling the condition

âi|vac〉 = b̂i|vac〉 = 0 for any i. On mathematical level this property can be extracted
from information encoded in the time-dependent density profile ρi(t) = 〈Ψ(t)|â†i âi|Ψ(t)〉,
where the state of the system at given moment t can be formally written as

|Ψ(t)〉 = exp
(
−iĤt

)
|Ψini〉, (6)

where |Ψini〉 is one of considered initial states. Temporal spreading of the excitation is
simply captured by the width of the excitation wave packet σ(t) = N

[∑
i ρ

2
i (t)

]−1
. The

quantity takes value 1/N for excitation localized at exactly one lattice site and 1 in a fully
delocalized case. In principle, by analyzing time-dependence of σ(t) one can easily settle
if the excitation remains localized or it spreads across the system.

ρi(t) = 〈Ψ(t)|â†i âi|Ψ(t)〉 (7)

As a measure of excitation width we define σ(t) = N
[∑

i ρ
2
i (t)

]−1

Exact evolution of the excitation wave packet governed by the full Hamiltonian for
the initial state |Ψ0〉 (left column) and |Ψ̃0〉 (middle column). Right column shows the
total number of vibrations N̂vib created in the system during the evolution (thick blue and
thin red line for left and middle column, respectively). Consecutive rows corresponds to
different local couplings gW = {0.1, 0.75, 1.5}. All calculations performed for gJ = 0 and
ω0 = 3. Note that for stronger interactions evident stabilization of the excitation density
profile, along with increasing number of created vibrations, is observed.

DRESSED RYDBERG ATOMS IN OPTICAL LATTICE

We consider off-resonant coupling of two different but degenerated internal Zeeman
ground states |g〉 and |g′〉 to two precisely selected, highly excited Rydberg states |nS〉
or |nP 〉 with principal quantum number equal n and angular momentum equal 0 or ~. In
consequence an atom can be found in one of the two dressed states:

|0〉 ≈ |g〉+ αs|nS〉, |1〉 ≈ |g′〉+ αp|nP 〉, (8)

where amplitudes αl = Θl/2∆l (l ∈ {s, p}) are determined by a total Rabi frequency of a
driving field Θl and a total laser detuning ∆l. In this basis of dressed states the dipole-
dipole interaction between neighboring atoms Csp3 /R3 may induce transitions between
internal states of neighboring atoms |0i〉|1i+1〉 ↔ |1i〉|0i+1〉.
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