Impact of charge doping, oxygen disorder and hydrostatic pressure on thermoelectric and magnetic properties of NdBa_{0.94}La_{0.06}Co₂O_{5+ δ}

J. Piętosa¹, K. Piotrowski¹, R. Puźniak¹, A. Wiśniewski¹, S. Kolesnik², B. Dabrowski²

¹ Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02-668 Warsaw, Poland

² Department of Physics, Northern Illinois University, De Kalb, IL 60115, USA

• The layered perovskite NdBaCo₂O_{5.5} is characterized by a sequence of magnetic and electronic phase trainsitions observed with increasing temperature: antiferromagnet-ferromagnet (T_N =240 K), ferromagnetparamagnet ($T_{\rm C}$ =260 K), and insulator-metal ($T_{\rm MIT}$ =350 K).

• The substitution of Ca for Nd (hole doping) have caused a decrease of $T_{\rm N}$ down to zero for 10% of Ca, and increase of $T_{\rm C}$ up to coincidation with $T_{\rm MIT}$ for 16% of Ca.

• The critical temperatures of above mentioned phase transitions can be modified by a substitution at the Ba- or Co-site or by a change of • We have studied the compounds with a wide range of the effective charge doping to probe separately the effects of disruption of the oxygen vacancy ordering and the charge doping.

• Investigation of the thermoelectric and magnetic properties permitted separation of the charge doping and oxygen disorder effects [1,2]. • The magnetic properties under hydrostatic pressure were investigated as well, in order to make a comparison of changes of T_N , T_C , and $T_{\rm MIT}$ between the cation hole-doped Nd_{0.94}Ca_{0.06}BaCo₂O_{5+ δ} [1] and electron-doped NdBa_{0.94}La_{0.06}Co₂O_{5+δ} systems.

Experimental set-up

The EasyLab MCell10 dedicated for SQUID magnetometer.

- For $\delta = 0.4-0.6$, the crystal structure is orthorhombic with oxygen vacancy ordering.
- The samples on the boundary between the orthorhombic and tetragonal phase ranges (e.g., $\delta=0.6$), can be refined as any of the two phases with similar quality. This indicates possible coexistence of both phases in the transitional range of oxygen contents.

 $T_{\rm C}$ and $T_{\rm N}$ vs. pressure 260-240-• For $NdBaCo_2O_{5.5}$ [4]: *H* = 100 Oe $\underbrace{\underbrace{}}_{200}$ $dT_{N}/dP = 1.03 \text{ K/kbar, } dT_{C}/dP = 0.62 \text{ K}$ a) • The La-Ba substitution (slight e-doping) 180 significantly enhances the pressure 160 coefficient of $T_{\rm N}$.

• The magnetic transition at T_N is likely to be of the first order.

• Within this range of oxygen content the thermoelectric properties are very similar to those of the pure system GdBaCo₂O_{5+ δ} [4].

maintained.

which the oxygen vacancy ordering of orthorhombic phase was

• A clear relationship between Seebeck coeff. and the charge doping (and proper charge carrier type) for NdBa_{0.94}La_{0.06}Co₂O_{5+ δ} is observed (Fig. a). particulary for *T*=150-200 K.

• For *T*=200–300 K both electrons and holes give the contribution to charge transport, with holes having considerably higher mobility [2]. • The temperature dependence of thermal conductivity (Fig. b) exhibits the decrease at the $T_{\rm MIT}$ due to removal of the electronic contribution for the insulating phase as observed for $Nd_{1-x}Ca_xBaCo_2O_{5,5}$ [1].

• These results suggest that the hydrostatic pressure stabilizes the antiferromagnetic phase and the stabilization is enhanced not only for the hole doped compositions [4] but also for electron doped ones.

• The stabilization of AFM phase under pressure is enhanced after hole doping by oxygen defects for NdBa_{0.94}La_{0.06}Co₂O_{5.55} (Fig. c), but it is suppressed for considerably electron doped $NdBa_{0.94}La_{0.06}Co_2O_{5.48}$ (Fig. a).

 $dT_{c}/dP = -0.39(18) \text{ K/kbar}$

 $dT_{\rm N}/dP = -0.11(65)$ K/kbar

 $\delta = 0.48$

• In Ref. 5, it was shown that the strength of exchange interactions between the lanthanide ions and the AFM-ordered Co sublattice can be described with the parameter $B_{ex} = 11.0(5)$ kOe, within molecular field theory. • For H=10 kOe, which is of the order of B_{ex} , the M(T) dependences do not reveal any significant increase at low temperatures.

- Sharp maximum at $T_{\rm C}$ is observed for pure NdBaCo₂O₅₅.
- The La–Ba substitution results in a shift of the high-temperature peak, observed at $T_{\rm C}$ for NdBaCo₂O₅₅, to lower T's, confirming decrease of $T_{\rm C}$ by La³⁺ substitution.
- Second rather broad peak is observed below T_N for La substituted \bullet (70–80 K), which may be connected to the ferrimagnetic contribution in antiferromagnetic matrix, seen in dc magnetic measurements.
- The single-phase orthorhombic samples with oxygen orderring were observed for $0.45 < \delta < 0.55$. We have found clear relationship between doping with cation and oxygen and the Seebeck coefficient in NdBa_{1-v}La_vCo₂O_{5+δ} (y=0-0.06, $\delta = 0.48; 0.5; 0.55$).
- Thermal conductivity exhibits characteristic decrease at T_{MIT} due to removal of the electronic contribution and is well correlated with suppression of the Seebeck coefficient.
- The $T_{\rm MIT}$ and $T_{\rm N}$ reach maximum values for slightly electron doped sample with a perfect oxygen ordering $\delta = 0.5$ while the $T_{\rm C}$ shows continuous decrease with the increase of δ .
- The hydrostatic pressure was observed to stabilize the antiferromagnetic phase for NdBa_{0.94}La_{0.06}BaCo₂O_{5.5}, whereas the electron
- doping of NdBa_{0.94}La_{0.06}Co₂O_{5.48} was found to suppress this stabilization.

[1] S. Kolesnik et al., Phys. Rev. B 86, 064434 (2012) [2] A. A. Taskin *et al.*, *Phys. Rev.* B **71**, 134414 (2005) [3] A. A. Taskin *et al.*, *Phys. Rev.* B **73**, 121101(R) (2006) [4] J. Pietosa *et al.*, J. Appl. Phys. **116**, 013903 (2014) [5] J. Więckowski et al., Phys. Rev. B 86, 054404 (2012)