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THE QUARTIC-QUADRATIC OSCILLATOR

The oxygen atom of the water molecule possesses two
lone electron pairs. Together with the two O-H bonds,
these are arranged in a tetrahedral configuration wrt. the
oxygen. To form a hydrogen bonded'bomplex the HF molecule
can approach eithervof the two pairs giving rise to two
equivalent tetrahedral complex geometries. The conversion
from one tetrahedral form to the other can be achieved by
inversion through the planar éonfiguration, which is
normally expected to involve overcoming an energy barrier.
A one-dimensional section through the molecular potential
ehergy hyper-surface corresponding toithe inversion |
vibration would therefore be of symmetric double minimum
type and would no longer be described even approximately

by the harmonic oscillator.

(i) The potential

The most successful analytical form for a double
minimum potential is the quartic-quadratic oscillator:

vV = ax4 + bx2 - 2.97

where X is a linear displacement along the vibrational
coordinate and a and b are constants. The quartic-
quadratic oscillator has been widely used for
treating low frequency vibrations in small ring

' 26 R . .
molecules. It has also been used as an inversion
g

. X . 2
potential for ammonia 7 and for cyanamide (NHZCN),Z

- which bhas a structure similar to that of Hy0- « -HF.
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The Hamiltonian for a one-dimensional quartic-quadratic
oscillator is:
H = - =p2+V 2.98
21 x
where: Py = -id/dx
¢ is the reduced mass for the vibration
V is given by eq.2.97
If we change to a new dimensionless coordinate =z
defined by:
| 2 1/6
2 = (2u/h2)y1/6,1/8, 2.99
and also let:
2
A = (82/21)2/3,1/3 2.100
B = (2u/45 3723  2.101
the Hamiltonian 2.98 transforms tb:
‘H = A(pi + z4\+ Bzz)
= _AHZ 2.102
The new Hamiltonian corresponds to the reduced
| potential:
v = Azt + BZ?) 2.103
with: .
Vo= AB?/4 2.104
z¢ . = _B/2 ' 2.105

min
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where Vo is the beight of the central barrier and Zoin

are the z coordinates of the twe minima.

The Hamiltonian 2.102 does not have solutions that are

' in closed analytical form and the problem is solved

using approximate methods. The anharmonic eigenfunctions
are expressed as linear combinations of some other
fﬁnctions ¢v where:

“’ih - }v:cicpv | 2.106 2
The energy matrix is set up iﬁ the ¢v basis set and‘then

_ diagonalized. The resulting eigenvalues and the eigen-

vectors give the anharmonic energy levels and the

coefficients ci respectively. It is possible, by making

use of the form of 2.102, to determine the vibrational

energy levels by; first, solving the dimensionless

Hamiltonian HZ (with V = z4 + Bzz),'then scaling up the

solutions with the constant A. A useful tabulation of

the solutions to Hz’ for a range of values of B, is

'given in ref.27. The harmonic oscillator basis set is

normally used for the functions ¢V and the non-zero

matrix elements necessary for setting up HZ are listed

in Table 2.3. Since the energy matrix is infinite in

v, the number of basis functions used in the calculation

_has to bé in excess of the number of the required }
enérgies. The first fifty harmonic oscillator functions %
are regarded as being sufficient to determiné the first

ten quartic-quadratic levels accurately. The summation

in 2.106 should theérefore be for v ranging from 0 to 49.



56

Once the eigenfunctions v,y 2re available, the
expectation values of the various powers of the z
~coordinate can bé evaluated. Thus:
. 3 _ | |
<Z> .. = <z >., = 0 2.107
ii ii
_ 47
- i i
<@ = Y (0)(?v+1)+éz cyCr,a{(v + (v + 21}
v=0 v=0 .
+ 3 Z c, c _olv(v - 1)}é 2.108
v=2
49 ~ 47
-3 _ i 2 ii
<z’>i = 12 (e (2v” +2v+1)+§z CyCusa
v=0 v=0

(v + B + (v + 21

+ % z: c c 2(2v - D{(v - 1)v}%

v=2

+ 3 Z ctel v+ D+ (v + 3w + )}
v=

49 :
+ ¥y cici_4{v(v - 1)(v - 2)(v - 3)}% 2.109
v=4 :

(ii) Treatment of rotational constants

The expectation values 2.107 - 2.109 can be used to
treat the effect of a double minimum potential on the

. Observed rotational constants. 1If there are no



coriolis effects,‘the vibration—rofation interaction is
thought to be the result of quantum mechanical
’averagingﬁof the molecular structure over the vibration.
The instantaneous rotaticnal constant ng (A, B or C)

can be expressed as a Taylor series in the normal

coordinate829:

3N-8 ' 3N-6 3N-6

= Rr° gg + gg gg
gg Bog * 2 b Z Pr®y * 2 b9
k klm
2.110

where: )
gg  _ gg _ .2 : 6 1
bk = a(ng)/st, bkl 3 (ng)/anaQ1 etc 2.111

The time averaged value of the rotational constant is

~obtained by replacing the coordinates Qk with the

Vappropriate guantum mechanical averages. Since we are .
interested in rotational constants when only the
.iﬁversion vibration (Q1 say) 1is populated, expression
'2.110 can be rearfanged to give, for i quanta of the

inversion:

“Peg’11 Bog * & Pk Qoo * 2 Py e

<QQ
®i k*1l oo
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gg ge gg |
7T ¢ FIBTQ ot 2P Q@ o EQp

k- k1l

gg ' ' +'
+ oy z P11%% 00 T 2 Pr111 %N %00 T
k k1 -
2
Q1”33
- o 2
= B + g’ <Q <@, > + 2.112




2:' designates a summation where terms involving Ql are
cmitted.. The symmetry of the quartic-quadratic
oscillator requires the expectétion values of the odd
powers of the coordinate to be zero. The expansion 2.112
converges sufficiently quickly for terms higher than the
quartic to be ignored, hence, in terms of the reducéd

coordinate z, we have:

B = B® + g.<z9 4+ g <zis 2.113
v 2 vV

9 and s; are normally treated as

empirical parameters and are obtained from a least

The coefficients BO, 8

squares fit to the obser&ed rotational constants where
<22>VV and <z4>VV are calculated from a known function.
If the dynamics of the double minimum vibration are
known and contributions from the other modes can be:
ignored, it is possible to estimate'the three
coefficients from structural considerations?o since,
from 2.112 and 2.111, g, = 3°B/30” etc. The conversion
relationships between the normal and the reduced |
coordinates now become important as the dynamics
calculations will usually be carried out in the former.
If ‘A has the units of cm—;, B and z are dimensionless,
a is in cm™ ! 8—4; b is in cm * £2 and x is in 2, then
the factor (Zu/ﬁz) in equations 2.99 - 2.101 can be

replaced by 0.059304.u, where u is in amu. Hence:
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TABLE 2.3

Matrix elements, in the harmonic oscillator basis set,
necessary for evaluating the reduced Hamiltonian for

a one dimensional quartic-quadratic oscillator

<v |p2 |v-2>
wip i

<vlp§lv+2>
<v|zz{v—2>
<wvl]z?|v>

<v|z?|v+2>

<v|z4|v—4>

<vlz4{v—2>;

<vlzt|vs
<v|z4|v+2>

<vlz4iv+4>

“3iv(v-1)1?
3(2v+1)

S3{(v+1)(v+2)}E

3{v(v-1)1?
1(2v+1)

%{(v+1)(v+2)}%'

Fv(v-1)(v-2) (v-3)}}
3(2v-1){v(v-1)}2
2(2v2+av+1)
§(2v+3) [ (v+1)(v+2)} P

FU(v+1) (v+2) (v+3) (v+4)}




(iii)

'(eq.2.103) is governed by B while A acts merely as a

60

z = (0.059304 ,)>/8 /8,
A = (0.059304 y)~2/3 173
B = (0.059304 u)l/s a~2/3y, 2.114
and the corresponding reverse relations are:

- -3 -3
X = (0.059304 u) A °z
a = AS(0.059304 u)2

2 ' '

b = A"B(0.059304 u) , 2.115

Effect on rotational spectra

The shape of the reduced quartic-quadratic potential

‘scaling factor. Positive values of B lead to a single
‘minimum potential. Negative values of B introduce a

‘quadratic hump at the centre of the quartic well which

gives rise to a double minimum. Figure 2.3 gives a few

examples illustrating the range of potentials encountered

in practice. The appearance of the central barrier is

seen to push the levels 0 and 1, 2 and 3 etc. together,
resuiting,‘at the high barrier limit, in degenerate pairs
of levels (hence the notation O+—O-;, 17-17...). The
microwave spectrum would reflect such behaviour in
relative intensities of satellites belonging to the

satellite series for the vibration in question. If

measurements on the first two excited states are available
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then the ratio of the first two energ§ level spacings

(2 <« 1/2 « 0) gives an indication of the nature of the
potential., The ratio should be equal to 1 for a pure
quadratic oscillator, 1.335 for a pure quartic
‘oscillator and should be greater than 1,335 for a quartié—

quadratic oscillator possessing a double minimum.

The quartic-quadratic potential also manifests itself in
‘characteristic behaviour of rotational constants with

the quantum number for the vibration (figure 2.4).

Single minimum potentials exhibit smooth changes in the
rotational constants, whiie double minimum potentials
introduce’irregularities,that are dependent on the

reduced mass for the vibration and the height»of the
central barrier, In some cases?9 the rotational constants
can be such that, on the frequency scale, one of the
~vibrational satellites lies to one side of the ground state,
while the remaining satellites in the progression are

on the opposite side. At the high barrier limit, as in
-.silacyclobutane?8 the changes in the rotational constants
are described by a stép function, as constants for the

near degenerate vibrational pairs convefge. Coriolis
interaction between vibration and rotation becomes important
in such cases, and it is necessary to eliminate the
resulting contributions to the rotational gonstant537b’38

if an expansion like 2.113 is to be employed.
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