
THE QUArtTIC-QUADRATIC OSCILLATOR 

The oxygen atom of the water molecule possesses two 

lone electron pairs. Toge~her with the two 0-H bonds, 

these are arranged in a tetrahedral configuration wrt. the 

oxygen. To form a hydrogen bonded complex the HF molecule 

can.approach either of the two pairs giving rise to two 

equivalent tetrahedral complex geometries. The conversion 

from one tetrahedral form to the other can be achieved by 

inversion through the planar configuration, which is 

normally expected to involve overcoming an energy barrier. 

A one-dimensional section through the molecular potential 

energy hyper-surface corresponding to the inversion 

vibration would therefore be of symmetric double minimum 

type and would no longer be described even approximately 

by the harmonic oscillator. 

(i) The potential 

The most successful analytical form for a double 

minimum potential is the quartic-quadratic oscillator: 

v = 4 2 
ax + bx 2.97 

where x is a linear displacement along the vibrational 

coordinate and a and b are constants. The quartic-

quadratic oscillator has been widely used for 

treating low frequency vibrations in small ring 
. 26 

molecules. It has also been usod as an inversion 

potential for ammonia
27 

and for cyanamide (NH 2CN),
28 

which has a structure similar to that of H20· • ·HF. 
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The Hamjltonian for a one-dimensional quartic-quadratic 

oscillator is: 

H = 

where: px = -id/dx 

p is the reduced mass for the vibration 

V is given by eq.2.9'l 

If we change to a new dimensionless coordinate z 

defined by: 

z = ( 2u/1l2)1/6al/6x 

and also let: 

A = (~2/ 2u)2/3al/3 

B = (2u/~2)1/3a-2/3b 

the Hamiltonian 2.98 transforms to: 

H 
2 4 2 = A(p + z ,+ Bz ) z 

= 

The new Hamiltonian corresponds to the 

potential: 

v A(z 
4 2 

= + Bz ) 

with: 

v = AB 2 j4 
0 

2 
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where V is the height of the central barrie~ and z . 
0 m1n 

are th(~ z coordinates of the two minima. 

The Ha~iltonian 2.102 does not have solutions that are 

in closed analytical form and the problem is solved 

using approximate methods. The anharmonic eigenfunctions 

are expressed as linear combinations of some other 

functions ¢ where: v 

= 2.106 

The energy matrix is set up in the ¢ basis set and then v 

diagonalized. The resulting eigenvalues and the eigen-

vectors give the anharmonic energy levels and the 

coefficients ci respectively. It is possible, by making 
v 

use of the form of 2.102, to determine the vibrational 

energy levels by, first, solving the dimensionless~· 

4 2 Hamiltonian H (with V = z + Bz ), then scaling up the z 
solutions with the constant A. A useful tabulation of 

the solutions to H , for a range of values of B, is 
z 

given in ref.27. The. harmonic oscillator basis set is 

normally used for the functions ¢ and the non-zero 
v 

matrix elements necessary for setting up H are listed z 

in Table 2.3. Since the energy matrix is infinite in 

v, the number of basis function3 used in the calculation 

has to be in excess of the number of the required 

energies. The first fifty harmonic oscillator functions 

are regarded as being sufficient to determine the first 

ten quartic-quadratic levels accurately. The summation 

in 2.106 shoulJ th~refore be for v ranging from 0 to 49. 
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Once th8 eigenfunctions •ah are available, the 

expectation values of the various powers of the z 

coordinate can be evaluated. Thus: 

<Z> .. 
11 

3 = <z >.. = 0 
11 

49 47 
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2.107 

2 <z > = il: 
i 2 . . l 

(cv) (2v + 1) + ! L c~c~+ 2 {(v + 1)(v + 2)} ii 

. t 
<z > •• 

. 11 

v=O v=O 

49 

L i i i + i c c 2{v(v - 1)} v v-
v=2 

49 47 

= t L: cc!>
2

<2v
2 

+ 2v + 1) + 1 r·· c~c!+ 2 
v=O v=O 

2.108 

(2v + 3){(v + 1)(v + 2)}i 

49 

il: 
i i 

1){(v 1)v}i + c c 2 (2v - -v v-
v=2 

45 

+ 1 L: i i 
1)(v + 2)(v + 3)(v + 4)}1 cvcv+4{(v + 

v=O 

49 

+t-l: 
i i 1)(v - 2)(v - 3)} i 2.109 c c 4{v(v -v v-

v=4 

(ii) Treatment of rotational constants 

The expectation values 2~107 - 2.109 can be used to 

treat the effect of a double minimum potential on tha 

observed rotational constants. If there are no 



corioli& effects, the vibration-rotation interaction is 

thought to be the result of quantum mechanical 

averaging of the molecular structure over the vibration. 

The instantaneous rotational constant B (A, B or C) gg 

can be expressed as a Taylor se~ies in the normal 

d . t 29 coor 1na es : 

3N-6 
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B gg = + L: b~iQkQl + + ..• 

k kl 

2.110 

where: 

= a (B ) 1 aQk, gg = 2.111 

The time averaged value of the rotational constant is 

obtained by replacing the coordinates Qk with the 

appropriate quantum mechanical averages. Since we are . 

interested in rotational constants when only the 

.inversion vibration (Q
1 

say) is populated, expression 

2.110 can be rearranged to give, for i quanta of the 

inversion: 

<B > .. = gg 11 

= 

L:' 
k 

bgg<Q > + 
k k 00 

+ {bgg + I' bgg<Q > + L:'bggll<Q Ql> + · ~ • }<Q1> · · 
1 k. kl k 00 kl k k 00 11 

2.112 



L' de:::;l.gnates a summation where terms involving Q
1 

are 

emitted. The symmetry of the quartic-quadratic 

oscillator ~equi~es the expectation values of the odd 

powers of the coordinate to be zero. The expansion 2.112 

converzes sufficiently quickly for terms higher than the 

quartic to be ignored, hence, in terms of the reduced 

coordinate z, we have: 

B 
.V 

= 0 2 4 
B + 8

2
<z > + 8 <Z > 

vv 4 vv 
2.113 

The coefficients B
0

, 8
2 

and 84 are normally treated as 

empirical parameters and arE: obtained from a least 

squares fit to the observed rotational constants where 

2 
<Z > vv 

4 
and <z > 

vv 
are calculated from a known function. 

If the dynamics of the double minimum vibration are 

known and contributions from the other modes can be 

ignored, it is possible to estimate the three 

coefficients from structural considerations~0 since, 

from 2.112 and 2.111, e2 ~ a2
B/au

2 
etc. The conversion 

relationships between the normal and the reduced 

coordinates now become important as the dynamics 

calculations will usually be carried out in the former. 

-1 If A has the units of em , B and z are dimensionless, 

. -1 o-4 -1 o-2 o 
a is 1n em A , b is in em A and x is in A, then 

the factor .(2~/~2 ) in equations 2.99 - 2.101 can be 

replaced by 0. 059304 dl, where ll is in amu. Hence: 
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TABLE 2. 3 

Matrix elements, in the harmonic oscillator basis set, 

necessary for evaluating the reduced Hamiltonian for 

a one dimensional quartic~quadratic oscillator 

2 <vlp lv-2> z 

<vlp2lv> z 

<vlp21v+2> z 

2 <viz lv-2> 

<vlz2 1v+2> 

4 <viz lv-4> 

<vlz4 1v-2>. 

<vlz41v> 

<vlz4 1v+2> 

I 4 I <v z !V+4> 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

-!{v(v-1)}! 

i(2v+l) 

-!{(v+l)(v+~)}! 

!(2v+l) 

.l 
i{(v+l)(v+2)} 2 

• 

!{v(v-l)(v-2)(v-3)}i 

i(2v-l){v(v-1)}! 

2 i(2v +2v+l) 

!(2v+3){(v+l)(v+2)}! 

!{(v+l)(v+2)(v+3)(v+4)}! 
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,1/6 1j~ 
z = (0.059304 - 0 

UJ a x 

-2/3 1 '3 A = (0.059304 u) a I 

B = (0.059304 u)1/3 a-2/3b 

and the corresponding reverse relations are: 

X = 

a = 

b = 

(iii) Effect on rotational spectra 

The shape of the reduced quartic-quadratic potential 

(eq.2.103) is governed by B while A acts merely as i 

2.114 

2.115 

scaling factor. Positive values of B lead to a single 

minimum potential. Negative values of B introduce a 

quadratic hump at the centre of the quartic well which 

gives rise to a double minimum. Figure 2.3 gives a few 

examples illustrating the range of potentials encountered 

in practice. The appearance of the central barrier is 

seen to push the levels 0 and 1, 2 and 3 etc. together, 

resulting, at the high barrier limit, in degenerate pairs 

of levels (hence the n~tation 0+-o-1 , 1+-1- ... ). The 

microwave spectrum would reflect such behaviour in 

relative intensities of satellites belonging to the 

satellite series for the vibration in question. If 

measurements on the first two excited states are available 
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I - cydopent. 3 .enone V=11.31( z4 + 12.56 z2) ref. 31 

II - oxetane V=28.15{z 4 -t474 z2l ref.32 

ill - thietane V=23.33{ z4 -6.827 z 2) ref.33 

IV - silacyctobutane V=20.53( z4 -9.335 z 2} ref. J4 

FIGURE 2. 3 Four experimentally determined quartic- quadratic potentials illustrating 
' 

the effect of the quadratic term on the shape of the potential and the 

positions of the energy levels . 
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FIGURE 2.4 Variation of the C rotational constant 

· with the ring bending quantum · number for 

the potentials of fig. 2.3 
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then the ratio of the first two energi level spacings 

(2 ~ 1/l + 0) gives an indication of the nature of the 

potential. The ratio should be equal to 1 for a pure 

quadratic oscillator, 1.335 for a pure quartic 

oscillator and should be greater than 1. 335 for a quartic-

quadratic oscillator possessing a double minimum. 

The quartic-quadratic potential also manifests itself in 

characteristic behaviour of rotational constants with 

' the quantum number for the vibration (figure 2.4). 

Single minimum potentials exhibit smooth changes in the 

rotational constants, while double minimum potentials 

.. introduce irregula~itie~ that are dependent on the 

reduced mass for the vibration and the height of the 

t 1 b · I 39 h . 1 t t cen ra arr1er. n some cases, t e rotat1ona cons an s 

can be such that,. on the frequency scale, one of the 

.vibrational satellites lies to one side of the ground state, 

while the remaining satellites in the progression are 

on the opposite side. At the high barrier limit, as in 

. 1 1 38 h . h . 1 t s1 acyc obutane, t e changes 1n t e rotat1ona cons ants 

are descr.ibed by a step function, as constants for the 

near degenerate vibrational pairs converge. Coriolis 

interaction between vibration and rotation becomes important 

in such cases, and it is necessary to eliminate the 

. 37b 38 
resulting contributions to the rotat1onal constants ' 

if. an expansion like 2.113 is to be employed. 
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