```
C
C
   STRFIT - GENERAL STRUCTURE FITTING PROGRAM, FITTING EFFECTIVE STRUCTURAL
C
            PARAMETERS DEFINED IN THE 'CART' SCHEME TO ANY COMBINATION
C
            OF ROTATIONAL CONSTANTS
C
C
C
      This program was originally written in 1990 for determination of
C
      effective r.0 structures of hydrogen bonded complexes, but it can also
C
      be used to fit rz, rm^(1L), rm^(2L), re^(SE) and other geometries.
C
C
      Citation and additional information on this program:
C
            Z.Kisiel, J. Mol. Spectrosc. 218, 58-67 (2003).
C
C
      This STRFIT was written independently of, but seems to embody similar
      features to Schwendeman's STRFIT. Once I found this out it was too late
C
C
      to change the name.
C
C
            R.H.Schwendeman, "Structural parameters from rotational spectra",
C
            in "Critical evaluation of chemical and physical structural
            information", D.R.Lide and M.A.Paul, Eds., National Academy of
C
C
            Sciences, Washingtom, D.C. (1974).
C
C
      For a similar least-squares fitting approach see also:
C
C
            P.Nosberger, A.Bauder, and Hs.H.Gunthard, "A versatile method
C
            for molecular structure determinations from ground state
C
            rotational constants", Chem.Phys. 1,418-425(1973).
C
C
      The basic least-squares engine for fitting r0 internal parameters to
C
      ground state moments of inertia can be used to evaluate also:
C
C
      1/ r.z, re^SE or any other geometry fitted to moments of inertia
C
         modified by user supplied corrective contributions. For example,
C
         in the re^SE geometry (= semi-experimental equilibrium) the Be-B0
C
         corrections from a CFOUR anharmonic force field calculation can
C
         be used directly. The much smaller rotational g-tensor contributions
C
         can also be used.
C
      2/ r.m(1r) and rm(1rL) geometry
C
      3/ r.m(2r) and rm(2rL) geometry
C
C
      For r.m(1), r.m(2) and their subvariants see:
C
C
            J.K.G.Watson, A.Roytburg, W.Ulrich, J.Mol.Spectrosc.
C
            196,102-119(1999)
C
C
      Reviews dealing (among other topics) with re^SE evaluations:
C
            J.Demaison, Molec.Phys. 105,3109-3138(2007)
C
            C.Puzzarini et al., Int.Rev.Pjys.Chem. 29,273-367(2010)
C
C
      Demonstration of the usefulness of rotational g-tensor corrections
C
      in r e^SE geometry evaluations:
C
            A.G.Csaszar, J. Demaison, H.D. Rudolph, "Equilibrium structures of three-
C
            four-, five-, six-, and seven-membered unsaturated N-containing
C
            heterocycles", J.Phys.Chem.A 119,1731-1746(2015)
C
C
      Declaration scheme of internal structural coordinates
C
      (colloquially called CART since it was adapted from a Wilson
C
      group program of that name):
C
C
            H.R.Thompson, J.Chem.Phys. 47,3407-3410(1967)
C
C
C
      Main features of STRFIT:
C
```

```
C
      - fit of up to MAXPAR structural parameters to up to MAXCON measured
C
        rotational constants in up to MAXISO isotopic species
C
C
      - each structural parameter can have up to twenty repetitions in the
C
        molecule
C
C
      - up to MAXCHG structural parameters can be different between the parent
C
        and the substituted species
C
C
      - non-linear Levenberg-Marquardt least squares fitting algorithm is used
C
         (Numerical Recipes Chapt.14)
C
C
      - the fit is to (equally weighted) moments of inertia or planar moments
C
        and not to rotational constants, although when rotational constants
C
        are to be fitted they are declared conventionally
C
C
      - the spectroscopic constants that can be fitted to are A,B,C, B+C,
        and A+B, and the three planar moments Pa,Pb,Pc (in any combination)
C
C
C
      - the data set for STRFIT is compatible with PMIFST so the latter can
        be used to check the 'CART' definitions
C
C
C
      - The user only needs to specify the generic name MOLNAM on startup,
C
        and the input/output files are then:
C
C
            MOLNAM.STF = the input file
C
C
            MOLNAM.OUT = the main output file with complete results of the fit
C
            MOLNAM.PMI = the abbreviated output file containing at the top
C
                            the connectivity declaration of the fitted structure
C
                            for viewing with PMIFST
C
            MOLNAM.XYZ = the fitted geometry in Cartesians for viewing with packages
                            such as Chimera, JMol, MacMolPlot...
C
C
C
C
        ver. 8.IV.2020
                                                             ---- Zbigniew KISIEL -----
C
C
                                  Institute of Physics, Polish Academy of Sciences
C
                                  Al.Lotnikow 32/46, Warszawa, POLAND
C
                                                                   kisiel@ifpan.edu.pl
C
                                      http://info.ifpan.edu.pl/~kisiel/prospe.htm
C
C
C Modification history:
C
C
        1990: Creation
C 24.06.95: PARAMETER dimensioning
C 10.12.99: Fitting of B+C and A+B
C 30.08.00: Echo of fitted structure to STRFIT.PMI
C 8.01.01: Various incremental modifications
C 8.04.02: Fitting also of planar moments
C 19.04.02: Elimination of bug in writing STRFIT.PMI
C 4.06.02: rm(1) and rm(2) model + fixed parameters + overhaul
C 29.10.02: increase in MAXPAR and associated corrections
C 30.01.03: fitting equal c or d constants
C 8.08.05: correction of 'final principals' bug spotted by Star
C 8.08.05: correction of 'final principals' bug spotted by Stew Novick
C 14.11.08: correction to mass used for d terms, spotted by Jean Demaison
C 25.05.09: elimination of erroneous temporary code that crept in about 2005
C
                in Laurie parameter + improvement of symmetric top performance
C 15.02.10: allowance also for dB=B*-Bexp input and better input debugging
C 15.12.10: optional user parameter descriptors and updated input description
C 17.02.12: uncertainties in principal coordinates
C 12.12.12: increased dimensioning
C 6.03.13: allowance for exclusion from fit of some of the declared constants
C
  6.05.15: parameter repetitions with changes
c 22.05.15: generic i/o file names and addition of .xyz output
```

```
25.07.19: electronic correction in r_e^SE evaluation + misc. updates
C
C
        8.04.20: some output and documentation changes
C
C
        STRFIT DATA FILE STRUCTURE - specimen data file is reproduced below, with
C
        lines numbered to facilitate description:
C
C
               first column of the data file
C
                                                                          32nd column of data file (beginning of
C
                                                                                                  numerical input for all lines
C
                                                                                                   below the CART deck)
C lno.
C 1. buteneyne...HF, HF at the TRIPLE bond, in the bey plane
C 2.
                       11
   3.
                                                              .000000
                                                                                           .000000
C
                       1 0 0
                                              0
                                                                                                                       .000000
                                                                                                                                                  12.000000
                      2
C 4.
                               1 0 0
                                                                                           .000000
                                                                                                                       .000000
                                                             1.208600
                                                                                                                                                  12.000000

      2
      1
      0
      0
      1.208600
      .000000
      .000000

      3
      2
      1
      0
      1.431000
      177.900000
      .000000

      4
      3
      2
      1
      1.341600
      123.100000
      180.000000

      5
      1
      2
      4
      1.062000
      182.300000
      180.000000

      6
      4
      3
      2
      1.087000
      121.600000
      .000000

      7
      4
      3
      2
      1.087000
      118.700000
      180.000000

      8
      3
      4
      7
      1.087000
      121.700000
      0.000000

      9
      2
      3
      8
      0.604300
      177.900000
      .000000

      10
      9
      2
      3
      3.080000
      90.000000
      180.000000

C
    5.
                                                                                                                                                  12.000000
C
    6.
                                                                                                                                                  12.000000
C
     7.
                                                                                                                                                    1.007825
C
    8.
                                                                                                                                                    1.007825
C
   9.
                                                                                                                                                  1.007825
C 10.
                                                                                                                                                 1.007825
                                                        3.080000 90.000000 180.000000 18.998404
0.925700 360.000000 .000000 1.007825
RAMETERS: 2
C 11.
             10 5
11 10 9 2
TOTAL NUMBER OF PARAMETERS:
atom no., parameter no.
atom no., parameter no.
NO OF CONSTANTS TO FIT TO:
constant, species, value
con
C 12.
C 13.
C 14. TOTAL NUMBER OF PARAMETERS: 2
C 15.
C 16.
C 17.
C 18.
C 19. constant, species, value
C 20. constant, species, value
C 21. constant, species, value
C 24.
                NO OF CHANGES FROM PARENT SP.: 2
C 25.
                atom no.,parameter no.,value 11 4 2.0141022
                atom no.,parameter no.,value 11 1 -0.0023
C 26.
C
C
C The various lines are:
C
C
             line 1: descriptive comment (truncated to 78 characters if longer)
C lines 2-13 - block containing the CART definition of the molecular geometry
C-----
C
C
                               The number of atoms in the molecule, read in with format=(I5)
             line 2:
                                Optionally a second number (also in an I5 field) can be included,
C
C
                                and if equal to 1 specifies output of debugging information.
C
C
          line 3+: CART DEFINITION LINE:
C
                               N,NA,NB,NC,R,A,D,W
C
C
                                this is read in free format, but N,NA,NB,NC are to be integers, and
C
                                R,A,D,W are to be floating point values. There should be as many
C
                                such lines as the number of atoms declared in Line 2.
C
C
                                The structure of the CART line is defined in a separate set of
C
                                comments further below.
                                CART lines declare either real or dummy atoms, and the use of dummy
C
C
                                atoms is encouraged since it may considerably simplify the declaration
C
                                of the molecule. In the example above a dummy atom
```

8.10.16: improved diagnostics of errors in the input data file

C

```
C
               (carrying an infinitesimally small but non-zero mass) defines
C
               the centre of the triple bond to which the HF molecule
C
               is notionally bonded. The program will actually use the mass in
C
               the calculation so specify as low as possible (but non-zero mass)
C
               and mass of 0.000001u is recommended.
C
               Dummy atoms should not be counted in the evaluation of the rm^2
               d-parameters and are identified as such if their mass is less
C
C
               than 0.00001u.
C
C lines14-16 - block defining the parameters of fit
C
C
               The total number of declared parameters. These parameters can either
C
               be parameters of fit or are to be held fixed at declared values.
C
               The parameters can be either internal structural coordinates, or
C
               ancillary parameters such as c,d parameters of the rm(1) and
C
               rm(2) models, Laurie delta_H parameters, or empirical bond length
C
               change (mostly for use with deuteration)
C
C
  Parameter of fit declaration lines 15+ can be in two different forms, 15a or 15b:
C
C
C
               DEFINITION OF AN INTERNAL COORDINATE:
   line 15a:
C
               N,I,J,V,AD
C
C
               this is read in with input format=(31x,3i2,f14.0,20x,A20) so that
C
               the numbers have to be EXACTLY in the columns indicated below:
C
C
                     column: 32
                                                                                           91
C
                               C
                                                                        ccccccccccccccc
                               --++--++++++++++
C
               Examples:
C
C
   atom no., parameter no.
                                                                        r(C-C)
C
  atom no., parameter no.
                               7 2 2
                                                                        CCH (in CH3)
C
                                8 9
C
  atom no., parameter no. FIX 8 2 0 15.346
                                                                        fixed at lit.value
C
C
           N - the number of atom containing the required internal coordinate in
C
               its CART definition
C
           I - the CART parameter for that atom corresponding to the required internal
C
               (1=bond length, 2=bond angle, 3=dihedral angle)
C
C
           J - the optional repeat count declaring whether this parameter
C
               has any additional occurrences:
C
             J = 0 means that the parameter is unique
C
             J > 0 makes it possible to fit 'degenerate' parameters,
                   occurring for more than one atom (eg. CX bond in a CX3 pyramidal
C
C
                   segment) and the value of J defines the number
C
                   of additional occurrences of the parameter (e.g. J=2 for bond lengths in a methyl group). An additional line
C
                   in format =(a31,20i2) should then be inserted immediately
C
C
                   following the current definition line and containing
C
                   the numbers of atoms also carrying this parameter.
C
                   Up to twenty such additional occurrences are allowed.
C
                   NOTE: symmetric +- dihedral angle values can be fitted by
C
                     specifying the values which have opposite sign to that of
C
                     the parent value by using a negative number for the respective
C
                     atom. Regrettably, owing to current formatting restrictions,
C
                     the numbers of such atoms have to be smaller
C
                     than 10 (single digit)
C
             J < 0 makes it possible to fit 'degenerate' parameters with changes.
C
                   This feature is designed primarily for dihedral angles in
C
                   order to allow implementation of local rotational symmetry based
```

```
C
                   on a non-zero rotation angle for atom N.
C
                   This line is to be followed by |J| lines, each containing
C
                   two numbers: integer number of the atom carrying the repeated value,
C
                   and the difference of this value relative to that for atom N.
C
                   The entries are to start from column 32, but are free-format
C
                   otherwise. Negative atom numbers are allowed, and these will
C
                   specify a reversed sign value of V (see below). With this method
C
                   there is no limitation on the atom number that is present for J>0.
C
C
           V - the optional initial value for the declared parameter,
C
               which will override the value in the preceding CART deck
C
          AD - the optional alphanumeric descriptor of this parameter
C
               (up to 20 characters long), which will be echoed in the output.
C
               This has to start in column 72.
C
         FIX - the command to fix this parameter in the fit, details at the end
C
               of 15b below
C
C
C
               DEFINITION OF AN ANCILLARY PARAMETER OF FIT:
   line 15b:
C
               N,M,I,V
C
C
               this is read in with format=(31x,3i2,f14.0) so that the numbers have
C
               to be EXACTLY in the columns indicated below:
C
C
                     column: 32
                                                  51
C
                                    C
                               --++--+++++++++++
C
C
               Examples:
C
C
    rm(1) parameter c_a....-4 1 0
C
    rm(2) parameter_d_b.....5 2 0
C
    rm(2) parameter_d_b.....FIX-5 2 0
                                        0.001
C
C
           N - the code (always negative) defining the type of the ancillary
C
               parameter, and also the meaning of M,I,V
C
C
             N = -4 Watson's rm(1) c parameter, in which case
C
             M = 1,2,3,4,5,6 for c_a,c_b,c_c,c_ab,c_ac,c_bc
C
               = 7 for fitting of c_a = c_b
C
               = 8 for fitting of c_a = c_c
               = 9 for fitting of c_b = c_c
C
C
               = 10 for fitting c_a = c_b = c_c
C
             I = 0
C
             V = optional initial value for this parameter
C
C
             N = -5 Watson's rm(2) d parameter, in which case
C
             M = 1,2,3 \text{ for } d_a,d_b,d_c
C
               = 7 for fitting of d_a = d_b
C
               = 8 for fitting of d_a = d_c
C
               = 9 for fitting of d b = d c
C
               = 10 for fitting d_a = d_b = d_c
C
             I = 0
C
             V = optional initial value for this parameter, which will override
C
                  the value in the CART definitions
C
C
             N = -6 Laurie correction term for an XH bond, in which case
C
             M = the atom for which this bond is defined
C
             I = the number of additional bonds subject to the same correction: if
C
                 this is greater than 0 then an additional
C
                 line, format=(a31,20i2) should be inserted immediately
C
                 following, with numbers of atoms for which these internals
C
                 are defined
C
             V = optional initial value for this parameter
C
C
             N = -7 experimental Laurie term defined in terms of a projection angle
```

```
C
            M = the atom for which this angle is defined
C
            I = the number of additional angles subject to this correction,
C
                and I>O requires an additional line, format=(a31,20i2), specifying
C
                the numbers of atoms carrying such angles
C
            V = optional initial value for this parameter
C
C
            N = -8 isotopic bond length change relative to the value in
C
                   the parent - this is only for use with Deuterium
C
                    substitution.
C
            M = the atom for which this bond is defined
C
            I = the number of additional bonds subject to this correction,
C
                 and I>O requires an additional line, format=(a31,20i2), specifying
C
                the numbers of atoms carrying such bonds
C
            V = optional initial value for this parameter
C
C
          FIX = Any of the declared internal or ancillary parameters can be fixed
C
                 instead of fitted by writing FIX in columns 29-31 of the
C
                declaration line.
C
                This is one of only two cases for which the text in
C
                in columns 1-31 is relevant (the other is XXX for an excluded
C
                spectroscopic constant). Otherwise this field is ignored and
                can be used for arbitrary explanatory comments.
C
C
C
  C lines17-23 - block defining the spectroscopic constants to be fitted to
C
C
   line 17:
              The total number of available spectroscopic constants.
C
C
  line 18+:
              DEFINITION OF THE SPECTROSCOPIC CONSTANT TO BE FITTED TO:
C
              N,M,B,dI,dB
C
C
              read in with format=(31x,2i2,3f14.0) so that the numbers have
C
              to be EXACTLY in the columns indicated below:
C
C
                    column: 32 36
C
                                              C
C
C
              Examples:
C
C Constant, species, value..... 1 1 312142.390
                                                                               NH2CN
C Constant, species, value...... 1 1 312142.390
                                                                               NH2CN
C Constant, species, value..... 1 1 312142.390
                                                                30000.
                                                                               NH2CN
C Constant, species, value....XXX 1 1 312142.390
                                                                               NH2CN
C Constant, species, value..... 1 1 312142.390
                                                                30000.
                                                   0.1
                                                                               NH2CN
C
C
          N - the code defining the type of spectroscopic constant
C
                = 1,2,3 \text{ for A,B,C}
C
                = 4,5 for B+C and A+B
C
                = 6,7,8 for P.a,P.b,P.c where P.a=(1/2)[Ib+Ic-Ia] etc.
C
C
              When B+C and A+B are declared, the fit is actually to
C
              4*505379.01/(B+C) = 4*I.bI.c/(I.b+I.c) = ca. I.b+I.c or to
C
              4*505379.01/(A+B) = 4*I.aI.b/(I.a+I.b) = ca. I.a+I.b
C
C
          M = the number of the isotopic species
C
          B = the value Bobs of the experimentally determined constant, in MHz for
C
              rotational constants and uA**2 for planar moments.
              The constants should be declared in increasing order of
C
C
              isotopic species number, although all constants for
C
              a given species are not required.
C
              It is optionally possible to specify EITHER fourth OR fifth numbers,
C
              dI or dB (usually only one allowed), such that:
C
```

```
C
C
         dI - vibration-rotation correction dI=Icorr-Iobs (in uA**2)
              to the experimental moment of inertia defined by N and B (even if
C
C
              experimental rotational constants are specified). In this case
C
              the dB field should be left blank.
C
C
         dB - vibration-rotation correction dB=Bcorr-Bobs (in MHz)
C
              to the experimental rotational constant defined by N and M.
C
C
              --> this is most often (Be-B0) from anharmonic force field calculations
C
                  and used for r_e^SE structure evaluation
C
C
              In this case the space corresponding to dI is normally to be left blank.
C
              BUT if a value is placed in this position then it is assumed to be
C
              the (dimensionless) rotational g-factor, g_bb, for rotational constant B.
C
              STRFIT will then subtract from the pertinent rotational constant
C
              an electronic correction dB_el (in MHz) = 0.000544617 * g_bb * B,
C
              where B is taken to be B+dB.
C
C
              The structure will then be fitted to corrected quantities
                Icorr=Iobs+dI, Iobs=conv/Bobs or to
C
C
                Icorr=conv/(Bobs+dB)
C
                Icorr=conv/(Bobs+dB-dB_el)
C
              where Iobs is the moment of inertia derived from the preceding
C
C
C
              rotational constant, or to P=Pobs+dI if planar moment has been
C
              The main purpose of the dI option is evaluation of r^* (r_z)
C
              structures by using dI's from a harmonic force field
C
C
              The main purpose of the dB option is evaluation of
C
              semi-experimental equilibrium (r_e^SE) structures to either
C
              the specified B = B0_exp + (Be-B0)_calc
C
                            B = B0_{exp} + (Be-B0)_{calc} - dB_{el}
              or to
С
С
        XXX = Any of the input rotational constants can be excluded from the fit
С
              by writing XXX in columns 29-31 of the declaration line.
C
              This is one of two only two cases for which the text in
C
              in columns 1-31 is relevant. Otherwise this field is ignored and
C
              can be used for arbitrary explanatory comments.
C
C-----
C lines24-26 - Block defining the isotopic changes
C
C
              There is to be one such block for each substituted isotopic species
C
              represented in the spectroscopic constants. Species 1 is taken to
C
              be the parent species, the first isotopic block is to be for
C
              species number 2, and successive such blocks are to be for
C
              successively numbered species.
C
              Each block begins with a repeat count line (line 24), which is
C
              followed by the declaring lines.
C
C
    line 24:
              The number of changes relative to the parent for a given
C
              isotopic species
C
С
    line 25+ - DEFINITION OF ISOTOPIC CHANGE:
C
              N,M,V
C
C
              read in with format=(31x,2i2,3f14.0) so that the numbers have
C
              to be EXACTLY in the columns indicated below:
C
C
                    column: 32 36
C
                              C
                              ++--++++++++++
```

```
C
C
          N = the number of the isotopic atom
          M = the number of the changed parameter (1,2,3,4 for
C
              bond length, bond angle, dihedral angle and atomic mass resp.),
C
C
          V = the value of this parameter in the substituted species.
C
              When the parameter is not a mass (N not equal to 4) then V declares
              the change relative to the value in the parent species
C
C
C-
   ______
C
C
     GENERAL NOTES:
C
C
            - As noted in several places above the input is in the
С
              old-fashioned fixed format, so it is necessary to keep input
C
              numbers within the specified columns.
C
C
            - Columns 1-31 can be used for any clarifying comments, which are
              up to the user and are not echoed to the output
C
C
C
            - Columns to the right of the input fields can be also be used for
C
              comments, which are not echoed to the output.
C
              Usually columns 78 and higher are safe for this purpose except in
C
              the definitions of parameters of fit where the descriptive
C
              alphanumeric parameter extends up to and inclusive of column 91
C
C
            - The input file is not read past the last set of isotopic changes,
C
              so the rest of the file can be used for any purpose - usually
C
              storage of alternative data and of results.
C
C
            - STRFIT does not write to the input file so it will not corrupt it
C
C
            - Additional blocks of comments are allowed before all lines
              with a repeat count: i.e. those that specify:
C
C
                  the number of atoms,
С
                  the number of parameters,
С
                  the number of spectroscopic constants
C
                  the number of isotopic changes.
C
              These comment lines have to have a '!' character in the first
C
              column, and there is no limit on their number. Such lines are
C
              echoed at the top of the output file.
C
C
     WARNING: There is a known problem with symmetric top molecules
C
              which break symmetry on isotopic substitution. This is
C
              associated with the way the program implements parallel axes for
C
              the rm(1r) scheme and the resulting possibility of perpendicular
C
              axis switching. Steps have been taken to stabilise such behaviour,
C
              and those are marked by the string May2009 in the code
C
C
C-
C
    CART = Thompson J.Chem.Phys. 47,3407(1967) definitions:
C-----
C
    1. Atom N in the molecule is defined in terms of three other neighbouring
C
С
       atoms: NA, NB, and NC, and a bond length R(N-NA), a bond angle
       A(N-NA-NB) and a dihedral angle D(N-NA-NB-NC)
C
C
C
    1a. Atoms are declared in the sequence of increasing N (starting from N=1)
C
       and the numbers of the defining atoms NA, NB, NC all have to be smaller
C
       than N (and all different)
C
C
    1b. For N=1 set NA, NB, NC, R, A, D to zero
C
       For N=2 set NB,NC, A,D to zero
C
       For N=3 set
                     NC,
                              D to zero
C
```

2. For a right handed coordinate system dihedral angles are defined

C

C by viewing the configuration C i/ from the NC direction along the NB-NA axis if NC is bonded to NB ii/ from the NC direction along the NA-NB axis if NC is bonded to NA C C The angle is defined positive for a clockwise rotation C of atom NC into the plane N-NA-NB. C C 3. In the calculation of initial Cartesian coordinates the atom N=1 C defines the origin, the line N=1 to N=2 defines the X axis and C atoms N=1, N=2, N=3 define the XY plane. C C C-C COMPILATION: C C If you want to compile this program then please note that it is crucially C dependent on the use of 'static memory allocation'. Please read the following C notes copied from the PROSPE webpage (and also use the data files from C the webpage for testing): C C Most contemporary compilers no longer use default static memory allocation C that preserves values of variables previously set in some subroutine. Many C programs assume this to be the case so that you need to use an appropriate C keyword to enforce static allocation. For example on the f77 compiler on C SGI machines this is the -static option, whereas with Intel Visual Fortran C you have to use option -Qsave. Note that with some compilers optimization C options used not to be safe. With good compilers this is no longer the C case, but if problems crop up it is still good to check by disabling C optimization. C C Command line example for gfortran: C gfortran -fno-automatic strfit.for -o strfit C C Command line example for Intel Visual Fortran 9: C ifort -nopdbfile -nodebug -traceback -arch=pn1 -tune=pn1 -02 -Qsave C -ccdefault:fortran -fpscomp:filesfromcmd strfit.for C C Command line example for Intel Visual Fortran 11: C ifort -nopdbfile -nodebug -traceback -O3 -Qsave -ccdefault:fortran C -fpscomp:filesfromcmd strfit.for

C C